SONA COLLEGE OF TECHNOLOGY, SALEM-5

(An Autonomous Institution)

B.E- Civil Engineering

CURRICULUM and SYLLABI

[For students admitted in 2019-2020]

B.E / B.Tech Regulation 2019

Approved by BOS and Academic Council meetings

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester I under Regulations 2019 (CBCS) Branch: Civil Engineering

S.No	Course Code	Course Title	L	Т	Р	С	Category	
Theory								
1	U19ENG101	English for Engineers - I	2	0	2	3	HS	
2	U19MAT102A	Linear Algebra and Calculus	3	1	0	4	BS	
3	U19PHY103A	Physics for Civil Engineering	3	1	0	4	BS	
4	4 U19CHE14A Chemistry for Civil Engineering		3	1	0	4	BS	
5	U19EGR106	Engineering Graphics **	2	0	2	3	ES	
	Practical							
7	U19PCL108A	Physics and Chemistry Laboratory-I #	0	0	3	1.5	BS	
8	U19WPL112	Workshop Practices Laboratory	0	0	2	1	ES	
9	U19GE101	Basic Aptitude-I	0	0	2	0	EEC	
Total Credits								
Optional Language Elective*								
11	U19OLE1101	French						
12	U190LE1102	German	0	0	2	1	HS	
13	U190LE1103	Japanese						

*Students may opt for foreign languages viz., German/French/Japanese with additional one credit (Not accounted for CGPA calculation)

Laboratory classes on alternate weeks for physics and chemistry. The lab examination will be conducted separately for 50 marks each with 2 hours durations.

** The examination will be conducted for 3 hours through CAD software and manual drafting

Approved By

Chairperson,	Chairperson, Civil	Member Secretary,	Chairperson,
Science and	Engineering BoS	Academic Council	Academic Council
Humanities BoS			& Principal
Dr.M.Renuga	Dr.R.Malathy	Dr.R.Shivakumar	Dr.S.R.R.Senthil
			Kumar

Copy to:-HOD/Civil, First Semester BE Civil Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester II under Regulations 2019 (CBCS) 1

Branch: Civil Engineer	ing
------------------------	-----

S.No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Category
		Theory					
1	U19ENG201A	English for Engineers -II	2	0	2	3	HSMC
2 U19MAT202A Differential Equations and Vector Calculus		3	1	0	4	BSC	
3	U19PPR205	Problem Solving using Python Programming	3	0	0	3	BSC
4	U19BEE206	Basics of Electrical and Electronics Engineering	3	0	0	3	ESC
5	U19CE201 Basics of Engineering Mechanics		3	1	0	4	BSC
	1	Practical					
6	6 U19BEE207 Basics of Electrical Engineering Laboratory		0	0	2	1	ESC
7	U19PCL208A	Physics and Chemistry Laboratory-II	0	0	3	1.5	BSC
8	U19PPL211	Python Programming Laboratory	0	0	2	1	ESC
9	U19GE201	Basic Aptitude-II	.0	0	2	.0	EEC
				· To	tal Credits	20.5	
		Optional Language E	ective*				
10	U19LE1201	French				-	
11	U19LE1202	German	0	0	2	1	HSMC
12	U19LE1203	Japanese					

*Students may opt for foreign languages viz, German/French/Japanese with additional one credit (Not accounted for CGPA calculation)

Approved By

Chairpers **Humanities BoS** Dr.M.Renuga

Chairperson, Civil **Engineering BoS** Dr.R.Malathy

Me

er Secretary. Academic Council Dr.R.Shivakumar

Chairper n, Academic

Council & Principal Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Civil, Second Semester BE Civil Students and Staff, COE

13.12.2019

0/00

B.E/B.Tech Regulations-2019

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E. / B.Tech. Semester III under Regulations 2019 Branch: Civil Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
		Theory				
1	U19MAT301A	Fourier Analysis and Statistics	3	1	0	4
2	U19CE301	Mechanics of Fluids	2	1	0	3
3	U19CE302	Strength of Materials -I	2	1	0	3
4	U19CE303	Construction Materials and Practices	3	0	0	3
5	U19CE304	Surveying	3	0	0	3
6	U19GE302	Mandatory Course : Environment and Climate Science	2	0	0	0
		Practical				
7	U19CE305	Materials Testing Laboratory	0	0	2	1
8	U19CE306	Survey Laboratory	0	0	2	1
9	U19ENG301	Communication Skill Laboratory	0	0	2	1
10	U19GE301	Soft Skills and Aptitude-I	0	0	2	1
	I			1	Total Credits	20

Approved By

Chairperson, Civil Engineering BoS
Dr.R.Malathy

Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Civil Engineering, Third Semester BE Civil Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E. / B.Tech. Semester IV under Regulations 2019 Branch: Civil Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
		Theory				
1	U19CE401	Environmental Engineering	3	0	0	3
2	U19CE402	Strength of Materials-II	2	1	0	3
3	U19CE403	Transportation Engineering	3	0	0	3
4	U19CE404	Concrete Technology	3	0	0	3
5	U19CE903	Professional Elective - Elements of Building Planning	3	0	0	3
6	U19CE904	Professional Elective - Energy Efficiency and Green Building Professional	3	0	0	3
7	U19GE403	Mandatory Course : Essence of Indian Traditional Knowledge	2	0	0	-
		Practical			· · ·	
8	U19CE405	Fluid Mechanics Laboratory	0	0	2	1
9	U19CE406	Concrete and Highway Laboratory	0	0	2	1
10	U19CE407	Environmental Engineering Laboratory	0	0	2	1
11	U19GE401	Soft Skills and Aptitude-II	0	0	2	1
					Total Credits	19

Approved By

Chairperson,	Civil	Engine	ering	BoS
--------------	-------	--------	-------	-----

Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Dr.R.Malathy Copy to:-

HOD/Civil Engineering, Fourth Semester BE Civil Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E. / B.Tech. Semester V Regulations 2019 Branch: Civil Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours
		Theory					
1	U19CE501	Structural Analysis-I	2	1	0	3	45
2	U19CE502	Soil Mechanics	2	1	0	3	45
3	U19CE503	Design of Reinforced Concrete Elements	2	1	0	3	45
4	U19CE907	Elective - Architecture and Town Planning	3	0	0	3	45
5	U19CE908	Elective -Building Services and Safety Regulations	3	0	0	3	45
6	noc21-ce71	Elective -Introduction to Engineering Seismology	3	0	0	3	45
		Open Elective					
7	U19CS1003	Internet of Things	3	0	0	3	45
8	U19ME1004	Renewable Energy Sources	3	0	0	3	45
9	U19ME1006	3D Printing	3	0	0	3	45
		Practical					
10	U19CE504	Survey Camp	0	0	2	1	30
11	U19CE505	Computer Aided Civil Engineering Drawing	0	0	2	1	30
12	U19CE506	Soil Mechanics Laboratory	0	0	2	1	30
13	U19GE501	Soft Skills and Aptitude-III	0	0	2	1	30
				To	tal Credits	22	

Approved By

Chairperson, Civil Engineering BoS

Member Secretary, Academic Counc	il
Dr.R.Shivakumar	

Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Dr.R.Malathy

Copy to:-

HOD/Civil Engineering, Fifth Semester BE Civil Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E. / B.Tech. Semester VI Regulations 2019 Branch: Civil Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours	
	Theory							
1	U19CE601	Water Resources and Irrigation Engineering	3	0	0	3	45	
2	U19CE602	Structural Analysis-II	2	1	0	3	45	
3	U19CE603	Foundation Engineering	3	0	0	3	45	
4	U19CE604	Limit State Design of Steel Structures	3	1	0	4	60	
5	U19CE916	Professional Elective - Repair and Rehabilitation of Structures	3	0	0	3	45	
	U19CE917	Professional Elective - Prefabricated Structures						
6	U19CE920	Professional Elective - Traffic Engineering and Management	3	0	0	3	45	
		Practical						
7	U19CE605	Civil Engineering Software Applications Laboratory	0	0	4	2	60	
8	U19CE606	Innovative Projects	0	0	2	1	30	
9	U19GE602	Professional Development Skills	0	0	2	1	30	
	Total Credits 23							

Approved By

Chairperson,	Civil	Engineerin	ng BoS
--------------	-------	------------	--------

Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Dr.R.Malathy Copy to:-

HOD/Civil Engineering, Sixth Semester BE Civil Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester VII under Regulations 2019 Branch: Civil Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours
		Theory					
1	U19GE701	Professional Ethics and Human Values	3	0	0	3	45
2	U19CE702	Construction Engineering Management	3	0	0	3	45
3	U19CE703	Earthquake Resistant Structures	3	0	0	3	45
4	U19CE922	Professional Elective - Bridge Engineering	3	0	0	3	45
5	U19CE924	Professional Elective - Prestressed Concrete Structures	3	0	0	3	45
		Open Elective					
	U19CS1001	Big Data Analytics					
	U19CS1002	Cloud Computing					
6	U19CS1003	Internet of Things	3	0	0	3	45
	U19CS1004	Mobile Application Development					
	U19EE1005	Electrification In Building Construction					
		Practical					
7	U19CE704	Estimation and quantity surveying	0	0	4	2	60
9	U19CE705	Design Project	0	0	4	2	60
9	U19CE706	Internship	0	0	0	2	60
10	U19CE707	Industrial Lecture	0	0	1	0	30
				To	tal Credits	24	

Approved By

Chairperson, Civil Engineering BoS	Member Secretary, Academic Council	Chairperson, Academic Council & Principal
Dr.R.Malathy	Dr.R.Shivakumar	Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Civil Engineering, Seventh Semester BE Civil Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E. / B.Tech. Semester VIII Regulations 2019 Branch: Civil Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours
	Practical						
1	U19CE801	Project Work	0	0	24	12	360
		12					

Approved By

Chairperson, Civil Engineering BoS	Member Secretary, Academic Council	Chairperson, Academic Council & Principal
Dr.R.Malathy	Dr.R.Shivakumar	Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Civil Engineering, Eighth Semester BE Civil Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester I under Regulations 2019 (CBCS) Branch: Civil Engineering

S.No	Course Code	Course Title	L	Т	Р	С	Category
	Theory						
1	U19ENG101	English for Engineers - I	2	0	2	3	HS
2	U19MAT102A	Linear Algebra and Calculus	3	1	0	4	BS
3	U19PHY103A	Physics for Civil Engineering	3	1	0	4	BS
4	U19CHE14A	Chemistry for Civil Engineering	3	1	0	4	BS
5	U19EGR106	Engineering Graphics **	2	0	2	3	ES
	Practical						
7	U19PCL108A	Physics and Chemistry Laboratory-I #	0	0	3	1.5	BS
8	U19WPL112	Workshop Practices Laboratory	0	0	2	1	ES
9	U19GE101	Basic Aptitude-I	0	0	2	0	EEC
		T	otal	Crec	lits		
	Optional Language Elective*						
11	U19OLE1101	French					
12	U190LE1102	German	0	0	2	1	HS
13	U190LE1103	Japanese					

*Students may opt for foreign languages viz., German/French/Japanese with additional one credit (Not accounted for CGPA calculation)

Laboratory classes on alternate weeks for physics and chemistry. The lab examination will be conducted separately for 50 marks each with 2 hours durations.

** The examination will be conducted for 3 hours through CAD software and manual drafting

Approved By

Chairperson,	Chairperson, Civil	Member Secretary,	Chairperson,
Science and	Engineering BoS	Academic Council	Academic Council
Humanities BoS			& Principal
Dr.M.Renuga	Dr.R.Malathy	Dr.R.Shivakumar	Dr.S.R.R.Senthil
			Kumar

Copy to:-HOD/Civil, First Semester BE Civil Students and Staff, COE

U19ENG101 - ENGLISH FOR ENGINEERS – I

Common to Civil Engineering

L T P C 2 0 2 3

Course Outcome: At the end of course, the students will be able to

- 1. Use grammatical components effectively in both written and spoken communication
- 2. Develop speaking skills for self-introduction, delivering speeches and technical presentation.
- 3. Speak effectively in real time and business situations
- 4. Write email, formal letters and descriptions of graphics
- 5. Develop skills for writing reports and proposals, and for general purpose and technical writing.

UNIT - I

- General Vocabulary, Parts of speech
- Self-introduction personal information, name, home background, study details, area of interest, hobbies, strengths and weaknesses, projects and paper presentations, likes and dislikes in food, travel, clothes, special features of home town.
- Instructions, Email fixing an appointment, cancelling appointments, conference details, hotel accommodation, order for equipment, training programme details, paper submission for seminars and conferences
- Paragraph writing describing defining providing examples or evidences

UNIT - II

- Tenses, active and passive voice
- Welcome address, vote of thanks, special address on specific topic.
- Checklists, letter writing business communication, quotations, placing orders, complaints, replies to queries from business customers, inviting dignitaries, accepting and declining invitations, detailed project report

UNIT - III

- Prefixes and Suffixes
- Mini presentation in small groups of two or three, on office arrangements, facilities, office functions, sales, purchases, training recruitment, advertising, applying for financial assistance, applying for a job, team work, discussion, presentation.
- Job application letter and resume, recommendations

UNIT - IV

- Modal verbs and probability, concord
- Situational Role Play between examiner and candidate, teacher and student, customer and sales manager, hotel manager and organiser, team leader and team member, bank manager and candidate, interviewer and applicant, car driver and client, industrialist and candidate, receptionist and appointment seeker, new employee and manager, employee and employee, p.a. and manager, schedule for training
- Note making, Proposal, drafting circulars

UNIT - V

- If conditionals
- Situational Role Play Asking for directions, seeking help with office equipment, clarifying an error in the bill, job details, buying a product, selling a product, designing a website, cancelling and fixing appointments, hotel accommodation, training facilities, dress code, conference facilities.
- Memo, technical report writing feasibility reports, accident report, survey report
- Preparing abstracts for technical articles

TOTAL: 60 hours

Speaking test will be conducted for 20 marks externally and evaluated along with English for Engineers – I in the End Semester Valuation.

TEXT BOOK

• Technical English I & II, Dr. M. Renuga et al. Sonaversity, 2016

EXTENSIVE READING

- The Story of Amazon.com- Sara Gilbert, published by Jaico
- The Story of Google Sara Gilbert, published by Jaico

REFERENCE

- Norman Whitby, Business Benchmark Pre-Intermediate to Intermediate, Students Book, Cambridge University Press, 2006.
- A Course in Communication Skills, P. Kiranmai Dutt, Geetha Rajeevan, C. L. N. Prakash, published by Cambridge University Press India Pvt. Ltd.

U19MAT102A - LINEAR ALGEBRA AND CALCULUS Common to CIVIL, MECH, EEE, CSE, IT and MCT

LTPC

3 1 0 4

Course Outcomes: At the end of the course, the students will be able to

- find the rank of the matrix and solve linear system of equations by direct and indirect methods
- apply the concepts of vector spaces and linear transformations in real world applications
- apply the concepts of eigen values and eigen vectors of a real matrix and their properties in diagonalization and the reduction of a real symmetric matrix from quadratic form to canonical form
- find the Taylor's series expansion, Jacobians and the maxima and minima of functions of two variables
- apply appropriate techniques of multiple integrals to find the area and volume.

UNIT I - LINEAR SYSTEM OF EQUATIONS

Rank of a matrix – Solution of linear system of equations by matrix method, Gauss elimination, Gauss-Jordan, Gauss-Jacobi and Gauss-Seidel methods.

UNIT II - VECTOR SPACES

Vector Space – Linear independence and dependence of vectors – Basis – Dimension – Linear transformations (maps) – Matrix associated with a linear map – Range and kernel of a linear map – Rank-nullity theorem (without proof).

UNIT III - EIGEN VALUES AND EIGEN VECTORS

Eigen values and eigen vectors of real matrices – Properties of eigen values and eigen vectors – Cayley-Hamilton theorem – Diagonalization of real symmetric matrices – Reduction of quadratic form to canonical form.

UNIT IV - MULTIVARIABLE CALCULUS

Functions of several variables – Partial differentiation – Total derivative – Jacobians – Taylor's theorem for function of two variables – Maxima and minima of function of two variables without constraints – Constrained maxima and minima by Lagrange's method of undetermined multipliers.

12

12

12

UNIT V - MULTIPLE INTEGRALS

integrals - Volume as triple integrals in Cartesian coordinates.

Double integrals – Change of order of integration – Change of variables from Cartesian to polar coordinates – Area as double integrals in Cartesian coordinates – Triple

Theory: 45 hours; Tutorial: 15 hours TOTAL: 60 Hours

TEXT BOOKS

- 1. T. Veerarajan, "Linear Algebra and Partial Differential Equations", McGraw Hill Publishers, 1st Edition, 2018.
- 2. T. Veerarajan, "Engineering Mathematics for Semesters I & II", McGraw Hill Publishers, 1st Edition, 2019.

REFERENCE BOOKS

- S. Lipschutz and M. L. Lipson, "Linear Algebra", McGraw Hill Publishers, 6th Edition, 2018.
- E. Kreyszig, "Advanced Engineering Mathematics", Wiley Publishers, 10th Edition, Reprint, 2017.
- C. Prasad and R. Garg, "Advanced Engineering Mathematics", Khanna Publishers, 1st Edition, 2018.
- B. V. Ramana, "Higher Engineering Mathematics", McGraw Hill Publishers, 29th Reprint, 2017.
- B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 44th Edition, 2018.

U19PHY103A - PHYSICS FOR CIVIL ENGINEERING (For B.E Civil Engineering)

L T P C

3 1 0 4

Course Outcomes: At the end of the course, the students will be able to,

- 1. Discuss the dual nature of matter and radiation.
- 2. Describe the basic components of lasers.
- 3. Analyze the relation between arrangement of atoms and properties of solids.
- 4. Evaluate the factors affecting architectural acoustics of buildings.
- 5. Elucidate the different modes of heat transfer.

UNIT I - QUANTUM PHYSICS

 \mbox{Origin} of quantum mechanics – Limitations of classical theory - Dual nature of matter and radiation.

Particle nature of radiation - Compton Effect –Explanation based on quantum theory-Expression for Compton shift (no derivation).

Wave nature of matter - de Broglie waves - Schrödinger's time independent and time dependent wave equations - Physical significance of wave function - Energy and wave function of an electron trapped in one dimensional box.

Application of wave nature of particles - Electron microscope - Comparison of optical and electron microscope - Scanning electron microscope - Transmission electron microscope-Limitations of electron microscope.

UNIT II - LASERS

Basic terms - Energy level - normal population - induced absorption (pumping) - population inversion - meta stable state - spontaneous emission - stimulated emission.

Basic components of a laser - Active medium - pumping technique - optical resonator Einstein's theory - Stimulated absorption - spontaneous emission and stimulated emission.

Types of lasers - Solid lasers (Nd:YAG) - Gas lasers (CO_2 laser) - semiconductor laser (homojunction and hetero junction laser).

Applications - Holography - Construction and reconstruction of hologram - Applications of lasers in science and Engineering.

UNIT III - CRYSTAL PHYSICS

Importance of crystals - Types of crystals - Basic definitions in crystallography (Lattice –space lattice - unit cell - lattice parameters – basis - crystallographic formula) - Seven crystal systems and fourteen Bravais lattices – Lattice planes and Miller indices – Interplanar distance - d spacing in cubic lattice - Calculation of number of atoms per

12

12

unit cell - Atomic radius - Coordination number and Atomic Packing factor for SC, BCC, FCC and HCP Structures - Polymorphism and allotropy.

Crystal imperfections - Point, line and surface defects - Burger vector.

Crystal Structure – Graphite Structure, Diamond Structure.

UNIT IV - ARCHITECTURAL ACOUSTICS

Classification of sound waves: Audible sound waves, Infrasonic waves, Ultrasonic waves- Noise and musical sound-Weber – Fechner law-Loudness level and intensity.

Basic requirements for the acoustically good halls- Reverberation -Sabine's law and its importance (no derivation)-absorption co-efficient-Factors affecting the acoustics and their remedies.

Sound insulation: Noise classification-Transmission loss-Sound insulation between individual rooms.

UNIT V - THERMAL PHYSICS

Heat and temperature - Modes of heat transfer (Conduction, convection and radiation) - Specific heat capacity - thermal capacity and coefficient of linear thermal expansion. **Thermal conductivity** - Measurement of thermal conductivity of good conductor - Forbe's method - Measurement of thermal conductivity of bad conductor - Lee's disc method - Radial flow of heat - Cylindrical flow of heat - Practical applications of conduction of heat – Thermal insulation in buildings.

Thermal radiations - Properties of thermal radiations - Applications of thermal radiations.

TOTAL: 60 Hours

TEXT BOOKS

- B. K. Pandey and S. Chaturvedi, "Engineering Physics", Cengage Learning India Pvt. Ltd., Delhi, 2012.
- Dr. B.C. Punmia et al, "Building construction", Laxmi publications Pvt. Ltd., New Delhi 2008.

REFERENCES

- Engineering Physics, Sonaversity, Sona College of Technology, Salem (Revised Edition 2018).
- Rajendran, V, and Marikani A, 'Materials science' TMH Publications, (2004) New Delhi.
- Palanisamy P.K, 'Materials science', SciTech Publications (India) Pvt. Ltd., Chennai, Second Edition (2007)

12

U19CHE104A - CHEMISTRY FOR CIVIL ENGINEERING

L T P C 3 1 0 4

Course Outcomes: At the end of the course, the students will be able to

- 1. Analyze the impurities of water, their removal methods and explain the conditioning methods for domestic and industrial uses.
- 2. Outline the principles, applications of electrochemistry, types of corrosion and its control methods.
- 3. Compare the types of polymerization reactions, techniques and fabrication methods of polymers.
- 4. Analyze the composition, properties and industrial applications of engineering materials.
- 5. Describe the ingredients, manufacture, properties and applications of construction materials.

UNIT I - WATER TECHNOLOGY

Introduction - Characteristics – hardness – estimation of hardness by EDTA method, alkalinity and its estimation - Boiler feed water – requirements – disadvantages of using hard water in boilers – internal conditioning (colloidal, phosphate, calgon and carbonate conditioning methods) – external conditioning – zeolite process, demineralization process, desalination of brackish water by reverse osmosis - Domestic water treatment – screening, sedimentation, coagulation, aeration, sand filtration and disinfection methods - Chlorination, ozonation and UV treatment.

UNIT II - ELECTROCHEMISTRY AND CORROSION

Electrode potential – Nernst Equation – derivation and problems based on single electrode potential calculation – reference electrodes – standard hydrogen electrode – calomel electrode – Ion selective electrode – glass electrode – measurement of pH – electrochemical series – significance – electrolytic and electrochemical cells – reversible and irreversible cells – EMF – measurement of emf – potentiometric titrations (redox – Fe²⁺ vs dichromate) – conductometric titrations (acid-base – HCl vs NaOH) – Corrosion – types – dry and wet corrosion – examples – Corrosion control methods – Sacrificial anode and impressed cathode current method.

UNIT III - POLYMER CHEMISTRY

Nomenclature of Polymers - classification of Polymers - functionality - types of polymerization-addition-condensation and copolymerization - Free Radical mechanism of addition Polymerization - Properties of Polymers - glass transition temperature, Tg - Methods of Polymerization-bulk-solution-emulsion and suspension - Plastics - Moulding constituents of plastic - Moulding of plastics into articles-

12

12

Injection-Compression and Blow moulding – Thermoplastic and Thermosetting resins – Engineering Plastics-Nylon 6,6-Polycarbonate and Polyurethane-preparation-properties and applications – Rubbers-types-applications-vulcanization of rubber.

UNIT IV - CHEMISTRY OF ENGINEERING MATERIALS

Refractories – classification – acidic, basic and neutral refractories – properties (refractoriness, refractoriness under load, dimensional stability, porosity, thermal spalling). **Abrasives** – natural and synthetic abrasives – quartz, corundum, emery, garnet, diamond, silicon carbide and boron carbide. **Lubricants** – mechanism of lubrication, liquid lubricants, - properties – (viscosity index, flash and fire points, cloud and pour points, oiliness) – solid lubricants – graphite and molybdenum sulphide. **Composites** – definition, constituents of composites – composition, properties and applications of various fibre reinforced polymer (FRP) composites.

UNIT V - CHEMISTRY OF BUILDING MATERIALS

Lime – classification – manufacture and properties of lime – Cement – classification – Portland cement – chemical composition – manufacture of Portland cement by wet method – setting and hardening – analysis of cement – concretes – hot and cold weathering of concrete, cement and its prevention methods – special cements - gypsum – plaster of Paris – Glass - manufacture, types, properties and uses – Recent trends in construction materials – special paints and their applications in construction sector.

TOTAL: 60 hours

TEXT BOOKS

- P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., New Delhi, 17th Edition, 2018.
- S. Kalaiarasan et al, "Chemistry For Civil Engineering" Sonaversity, Sona College of Technology, Salem, 2019.

REFERENCE BOOKS

- O G Palana, Engineering Chemistry", Tata McGraw Hill Education (India) Private Limited, Chennai, Second Edition, 2017.
- B. Sivasankar, "Engineering Chemistry", Tata McGraw-Hill Pub. Co. Ltd., New Delhi (2008).
- B.K. Sharma, "Engineering Chemistry", Krishna Prakasan Media (P) Ltd., Meerut (2001).
- N. Krishnamurthy, K. Jeyasubramanian and P. Vallinayagam, "Applied Chemistry", Tata McGraw-Hill Publishing Company Limited, New Delhi (1999).

12

U19EGR106 - ENGINEERING GRAPHICS

LTPC

2 0 2 3

L3

L 3

L 6

Course Outcomes: Upon completion of this course the students will be able to

- **CO1** Predict the construction of various curves in civil elevation, plan and machine components.
- **CO2** Analyze the principles of projection of various planes by different angle to project points, lines and planes.
- **CO3** Draw the principles of projection of simple solid by the axis is inclined to one reference plane by change of position method.
- **CO4** Understand the interior details of complex components, machineries by sectioning the solid body. Study the development of surfaces for prisms and pyramids.
- **CO5** Draw the projection of three dimensional objects representation of machine structure and explain standards of orthographic views by different methods.

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications, Use of drafting instrument, BIS conventions and specifications - Size, layout and folding of drawing sheets, Lettering and dimensioning.

COMPUTER AIDED DRAFTING (Not for Examination)

Importance 2d Drafting, sketching, modifying, transforming and dimensioning.

UNIT I - PLANE CURVES (Manual drafting)

Curves used in engineering practices Conics – Construction of ellipse – Parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves.

UNIT II - PROJECTION OF POINTS, LINES AND PLANE SURFACES L 12 (CAD Software)

Projection of points – Projection of straight lines located in the first quadrant – Determination of true lengths and true inclinations – Projection of polygonal surface and circular lamina inclined to one reference planes.

UNIT III - PROJECTION OF SOLIDS

(CAD Software)

Creation of 3D CAD models of pyramids, prisms and solids of revolutions- Sectional views - (Not for Examination)

Projection of simple solids like prisms – pyramids – cylinder and cone when the axis is inclined to one reference plane by change of position method.

UNIT IV - SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES L 12 (CAD Software)

Sectioning of simple solids like prisms – pyramids, cylinder and cone in simple vertical position by cutting planes inclined to one reference plane and perpendicular to the other, (Obtaining true shape of section is not required). Development of lateral surfaces of simple and truncated solids – Prisms – pyramids –cylinders and cones.

UNIT V - CONVERSION OF ISOMETRIC VIEWS TO ORTHOGRAPHIC VIEWS L 12

(Manual drafting)

Representation of three dimensional objects – General Principles of Orthographic projection – Need for importance of multiple views and their placement – First angle projection – layout of views – Developing visualization skills through free hand sketching of multiple views from pictorial views of objects.

TOTAL: 60 Hours

TEXT BOOKS

- P. Suresh et al., "Engineering Graphics and Drawing", Sonaversity, Sona College of Technology, Salem, Revised edition, 2012.
- K.V. Natarajan Engineering Graphics by, Chennai, 17th edition 2003.

REFERENCE BOOKS

- Dhananjay A. JoIhe, Engineering Drawing with an introduction to AutoCAD, Tata McGraw Hill Publishing Company Limited, 2008.
- Basant Agarwal and Agarwal C.M., Engineering Drawing, Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.
- K. R. Gopalakrishnana, Engineering Drawing (Vol. I & II), Subhas Publications, 1998.
- Bertoline& Wiebe fundamentals of graphics communication III edition McGrawhill 2002.

U19PCL108A - PHYSICS CHEMISTRY LABORATORY - I PHYSICS PART (FOR B.E. CIVIL ENGINEERING)

L T P C 0 0 3 1.5

Course Outcomes: At the end of the course, the students will be able to,

- 1. Demonstrate an experimental setup to form interference fringes and use it to determine the thickness of the thin wire.
- 2. Study the change in properties of ultrasonic waves in a liquid medium and determine the characteristics of the liquid.
- 3. Demonstrate by means of an appropriate experiment the poor thermal conductivity of a given bad conductor
- 4. Apply the principle of spectrometry to determine the properties of a given prism.
- 5. Demonstrate the applications of a diode laser to determine the wave length, particle size in the given powder (Lycopodium) and the characteristics of a given optical fibre.
- 6. Investigate the non uniform bending behavior of a given material.

List of Experiments

- 1. Determination of the thickness of a thin wire by forming interference fringes using air wedge apparatus.
- 2. Determination of velocity of ultrasonic waves and compressibility of the given liquid using ultrasonic interferometer.
- 3. Determination of the thermal conductivity of a bad conductor using Lee's Disc apparatus.
- 4. Determination of dispersive power of the prism for various pairs of colors in the mercury spectrum using a spectrometer.
- 5. Determination of laser wavelength and particle size (lycopodium powder), acceptance angle and numerical aperture of an optical fibre using diode laser.
- 6. Determination of the Young's modulus of the given material by non-uniform bending method.

TOTAL: 45 Hours

U19PCL108A - PHYSICS CHEMISTRY LABORATORY - I CHEMISTRY PART (FOR B.E. CIVIL ENGINEERING)

L T P C 0 0 3 1.5

Course Outcomes: At the end of the course, the students will be able to,

- Estimate the amount of total, temporary and permanent hardness in the given water sample
- Analyse the different types of alkalinity and determine their amount in the given water sample
- Estimate the amount of hydrochloric acid present in the given solution using conductivity meter.
- Estimate the amount of hydrochloric acid present in the given solution using pH metry.
- Describe the estimation of ferrous iron present in the given solution using potentiometer.
- Evaluate the iron content of the water by spectrophotometry.

List of Experiments (Chemistry part)

- 1. Estimation of hardness of water sample by EDTA method.
- 2. Estimation of alkalinity of water sample by indicator method.
- 3. Estimation of HCl by conductometry. (HCl vs NaOH)
- 4. Estimation of HCl by pH metry.
- 5. Estimation of ferrous ion by potentiometric titration.
- 6. Determination of iron content in water by spectrophotometric method.

Total: 45 Hours

U19WPL112 - WORKSHOP PRACTICE

L T P C 0 0 2 1

Course Outcomes: Upon completion of this course the students will be able to

- **CO1** Familiarize with the basic of tools and equipment's used in fitting, carpentry, welding and sheet metal.
- **CO2** Fabricate the different simple products in above trades.
- **CO3** Produce different joining of metals.

LIST OF EXPERIMENTS

SECTION 1: FITTING

Tools and Equipment's- Practice in filling. Making of Vee joint and square (T-fitting) joint.

SECTION 2: SHEET METAL

Tools and Equipment's- Practice Making of Dust Pan and Funnel.

SECTION 3: WELDING

Tools and Equipment's – Practice Arc welding of Butt joint and Lap Joint.

SECTION 4: CARPENTRY

Tools and Equipment's- Planning Practice Making of Half Lap joint and Dovetail Joint.

TOTAL: 30 hours

U19GE101 - BASIC APTITUDE – I (Common to All Departments)

L T P C 0 0 2 0

Course Outcomes: At the end of course, the students will be able to

- 1. Solve fundamental problems in specific areas of quantitative aptitude
- 2. Solve basic problems in stated areas of logical reasoning
- 3. Demonstrate rudimentary verbal aptitude skills in English with regard to specific topics

1. Quantitative Aptitude and Logical Reasoning

Solving simple problems with reference to the following topics:

- a. Numbers HCF & LCM
- b. Decimal fractions
- c. Square roots & cube roots
- d. Surds & Indices
- e. Logarithms
- f. Percentage
- g. Averages
- h. Coding and Decoding & Visual language

2. Verbal Aptitude

Demonstrating plain English language skills with reference to the following topics:

- a. Synonyms
- b. Antonyms
- c. Verbal analogy
- d. Editing passages
- e. Sentence filler words

TOTAL: 30 hours

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester II under Regulations 2019 (CBCS) 1

Branch: Civil Engineeri	ing
-------------------------	-----

S.No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Category
		Theory					
1	U19ENG201A	English for Engineers -II	2	0	2	3	HSMC
2	U19MAT202A	Differential Equations and Vector Calculus	3	1	0	4	BSC
3	U19PPR205	Problem Solving using Python Programming	3	0	0	3	BSC
4	U19BEE206	Basics of Electrical and Electronics Engineering	3	0	0	3	ESC
5	U19CE201	Basics of Engineering Mechanics	3	1	0	4	BSC
	1	Practical					
6	U19BEE207	Basics of Electrical Engineering Laboratory	0	0	2	1	ESC
7	U19PCL208A	Physics and Chemistry Laboratory-II	0	0	3	1.5	BSC
8	U19PPL211	Python Programming Laboratory	0	0	2	1	ESC
9	U19GE201	Basic Aptitude-II	.0	0	2	.0	EEC
				· To	tal Credits	20.5	-
		Optional Language E	lective*				
10	U19LE1201	French					
11	U19LE1202	German	0	0	2	1	HSMC
12	U19LE1203	Japanese					

*Students may opt for foreign languages viz, German/French/Japanese with additional one credit (Not accounted for CGPA calculation)

Approved By

Chairpers **Humanities BoS** Dr.M.Renuga

Chairperson, Civil **Engineering BoS** Dr.R.Malathy

Me

er Secretary. Academic Council Dr.R.Shivakumar

Chairper n, Academic

Council & Principal Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Civil, Second Semester BE Civil Students and Staff, COE

13.12.2019

0/00

B.E/B.Tech Regulations-2019

U19ENG201A - ENGLISH FOR ENGINEERS - II

L T P C 2 0 2 3

Course Outcome: At the end of the course, the students will be able to

- 1. frame sentences correctly, both in written and spoken forms of language with accuracy and fluency.
- 2. develop and demonstrate listening skills for academic and professional purposes.
- 3. draw conclusions on explicit and implicit oral information.
- 4. develop effective reading skills and reinforce language skills required for using grammar and building vocabulary.
- 5. read for gathering and understanding information, following directions and giving responses.

UNIT - I

- Cause and effect expressions, adjectives, comparative adjectives
- Listening to conversations, welcome speeches, lectures and description of equipment
- Listening to different kinds of interviews (face-to-face, radio, TV and telephone interviews)
- Understanding notices, messages, timetables, advertisements, graphs, etc.
- Reading passages for specific information transfer

UNIT - II

- Prepositions and dependent prepositions
- Understanding short conversations or monologues,
- Taking down phone messages, orders, notes etc
- Listening for gist, identifying topic, context or function
- Reading documents for business and general contexts and interpreting graphical representations

UNIT - III

- Collocations
- Listening comprehension, entering information in tabular form
- Error correction, editing mistakes in grammar, vocabulary, spelling, etc.
- Reading passage with multiple choice questions, reading for gist and reading for specific information, skimming for comprehending the general idea and meaning and contents of the whole text

UNIT - IV

- Articles, adverbs
- Intensive listening exercises and completing the steps of a process.
- Listening exercises to categorise data in tables.
- Short reading passage: gap-filling exercise related to grammar, testing the understanding of prepositions, articles, auxiliary verbs, modal verbs, pronouns, relative pronouns and adverbs, short reading passage with multiple choice questions.

UNIT - V

- Pronouns
- Listening to extended speech for detail and inference
- Listening and developing hints
- Gap-filling exercise testing the knowledge of vocabulary, collocations, dependent prepositions
- Short reading passages for sentence matching exercises, picking out specific information in a short text

TOTAL: 45 Hours

The listening test will be conducted for 20 marks and reading for 20 marks internally and evaluated along with English for Engineers II in the End Semester Valuation.

TEXT BOOK

1. Technical English I & II, Dr. M. Renuga et al. Sonaversity, 2016

EXTENSIVE READING

- 1. Who Moved my Cheese? Spencer Johnson-G. P. Putnam's Sons
- 2. Discover the Diamond in You Arindham Chaudhari Vikas Publishing House Pvt. Ltd

REFERENCES

- 1. Norman Whitby, Business Benchmark Pre-Intermediate to Intermediate, Students Book, Cambridge University Press, 2006.
- A Course in Communication Skills, P. Kiranmai Dutt, Geetha Rajeevan, C. L. N. Prakash, published by Cambridge University Press India Pvt. Ltd.

U19MAT202A - DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

L T P C 3 1 0 4

Course Outcomes: At the end of the course, the students will be able to

- 1. apply the classical methods to solve linear ordinary differential equations.
- 2. apply the appropriate numerical methods to solve ordinary differential equations.
- 3. apply the Laplace transforms technique to solve ordinary differential equations.
- 4. apply the classical method to solve partial differential equations.
- 5. apply the concepts of vector differentiation and integration to determine the line, surface and volume integrals.

UNIT I - ORDINARY DIFFERENTIAL EQUATIONS

Linear higher order ordinary differential equations with constant coefficients – Cauchy's and Legendre's homogeneous linear ordinary differential equations – Method of variation of parameters.

UNIT II - NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

Single Step Methods: Taylor's series – Euler and Modified Euler methods – Fourth order Runge – Kutta method for solving first and second order ordinary differential equations.

Multi Step Methods: Milne's and Adam's predictor-corrector methods.

UNIT III - LAPLACE TRANSFORMS

Laplace transform: Conditions for existence – Transform of elementary functions – Basic properties – Transform of derivatives and integrals – Transform of unit step function and impulse function – Initial and final value theorems – Transform of periodic functions.

Inverse Laplace transform: Standard results – Statement of convolution theorem and its applications – Solution of linear second order ordinary differential equations with constant coefficients using Laplace transform.

12

12

UNIT IV - PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations – Lagrange's linear equation – Solution of standard types of first order partial differential equations – Linear partial differential equations of second and higher order with constant coefficients.

UNIT V - VECTOR CALCULUS

Vector differentiation: Scalar and vector valued functions – Gradient, directional derivative, divergence and curl – Scalar potential.

Vector integration: Line, surface and volume integrals – Statements of Green's, Stoke's and Gauss divergence theorem – Simple applications involving squares, rectangles, cubes and rectangular parallelopiped.

TOTAL: 60 Hours

TEXT BOOKS

- 1. T. Veerarajan, "Linear Algebra and Partial Differential Equations", McGraw Hill Publishers, 1st Edition, 2018.
- 2. T. Veerarajan, "Engineering Mathematics for Semesters I & II", McGraw Hill Publishers, 1st Edition, 2019.

REFERENCES

- 1. J. Stewart, "Calculus", Cengage Publishers, 8th Edition, 2016.
- 2. C. Prasad and R. Garg, "Advanced Engineering Mathematics", Khanna Publishers, 1st Edition, 2018.
- E. Kreyszig., "Advanced Engineering Mathematics", Wiley Publishers, 10th Edition, Reprint, 2017.
- B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 44th Edition, 2018.
- B. V. Ramana, "Higher Engineering Mathematics", McGraw Hill Publishers, 29th Reprint, 2017.

U19PPR205 - PROBLEM SOLVING USING PYTHON PROGRAMMING

9

9

9

9

Course Outcomes: At the end of the course, the students will be able to

- 1. develop algorithmic solutions to simple computational problems
- 2. write simple Python programs
- 3. write programs with the various control statements and handling strings in Python
- 4. develop Python programs using functions and files
- 5. analyze a problem and use appropriate data structures to solve it.

UNIT I - ALGORITHMIC PROBLEM SOLVING

Need for computer languages, Generation and Classification of computers - Basic organization of a computer, Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion).

UNIT II - BASICS OF PYTHON PROGRAMMING

Introduction-Python Interpreter-Interactive and script mode -Values and types, variables, operators, expressions, statements, precedence of operators, Multiple assignments, comments, input function, print function, Formatting numbers and strings, implicit/explicit type conversion.

UNIT III - CONTROL STATEMENTS AND STRINGS

Conditional (if), alternative (if-else), chained conditional (if-elif-else). Iteration-while, for, infinite loop, break, continue, pass, else. Strings-String slices, immutability, string methods and operations.

UNIT IV - FUNCTIONS AND FILES

Functions - Introduction, inbuilt functions, user defined functions, passing parameters - positional arguments, default arguments, keyword arguments, return values, local and global scope, recursion, lambda functions. Files -Text files, reading and writing files.

UNIT V - DATA STRUCTURES: LISTS, SETS, TUPLES, DICTIONARIES 9

Lists-creating lists, list operations, list methods, mutability list functions, searching and sorting, Sets-creating sets, set operations. Tuples-Tuple assignment, Operations on Tuples, lists and tuples, Tuple as return value- Dictionaries-operations and methods, Nested Dictionaries.

TOTAL: 45 Hours

REFERENCES

- 1. Ashok Namdev Kamthane, Amit Ashok Kamthane, "Programming and Problem Solving with Python", Mc-Graw Hill Education, 2018.
- 2. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", Second edition, Updated for Python 3, Shroff / O'Reilly Publishers, 2016.
- Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Programming in Python: An Inter-disciplinary Approach", Pearson India Education Services Pvt. Ltd., 2016.
- 4. Timothy A. Budd," Exploring Python", Mc-Graw Hill Education (India) Private Ltd., 2015.
- 5. Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAGE Learning, 2012.
- 6. Charles Dierbach, "Introduction to Computer Science using Python: A Computational Problem Solving Focus", Wiley India Edition, 2013.

U19BEE206 - BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

LTPC

3 0 0 3

Course Outcomes: At the end of the course, the students will be able to

- 1. analyze the various DC & AC circuits and find the circuit parameters.
- 2. discuss the construction and working principle of DC machines.
- 3. discuss the construction and working principle of Transformer & AC machines.
- 4. describe the various types of measuring techniques.
- 5. discuss the electrical systems in buildings and electrical standards for various devices.

UNIT I - DC & AC CIRCUITS

DC circuits: Definition of voltage, Current, Electromotive force, Resistance, Power & Energy, Ohms law and Kirchhoff's Law & its applications - Series and Parallel circuits- Star-delta transformation.

AC Circuits: Generation of alternating emf - RMS value, Average value, Peak factor and Form factor for sinusoidal AC waveform - Series RLC circuits - Introduction to three-phase system.

UNIT II - DC MACHINES

DC Generator: Construction of DC generator – Working principle of DC generator – EMF equation – Types of DC generator- Applications.

DC Motor: Working principle of DC motor – Back EMF- Types of DC motor-Applications.

UNIT III - TRANSFORMER & AC MACHINES

Transformer: Construction and working principle of transformer – EMF equation – Types of transformers- Transformation ratio.

AC machines: Construction and working principle of single phase & three phase induction motor- Applications.

9

9

UNIT IV - MEASURING TECHNIQUES

Strain measuring techniques using electrical strain gauges- Measurement of Resistance, Inductance and Capacitance using Wheatstone, Anderson and Schering bridges-Measurement of energy using single phase induction type energy meter –Load cells.

UNIT V - ELECTRICAL SYSTEMS IN BUILDINGS

Protective devices in electrical installations- Earthing for safety- Types of earthing- ISI specifications- Types of wires, wiring systems and selection criteria - Planning electrical wiring for building- Main and distribution boards- Layout of a substation.

TOTAL: 45 Hours

TEXT BOOKS

- 1. B.L. Theraja, "Fundamentals of Electrical Engineering & Electronics", S. Chand & Co Ltd, 2015.
- 2. S. Padma, "Basic Electrical and Electronics Engineering", Sonaversity, Revised edition 2016.

REFERENCES

- 1. S.K. Bhattacharya, "Electrical Machines", Tata MC Graw Hill Publishing company ltd., 3rd Edition, 2009.
- Muthusubramanian R, Salivahanan S, "Basic Electrical and Electronics Engineering", 3rd Edition 2007, Tata McGraw-Hill publishing company limited.
- A.K.Sawheny, "A course in Electrical and Electronics Measurement & Instrumentation", DhanpatRai and Co, 9th Edition, 2012

U19CE201 - BASICS OF ENGINEERING MECHANICS

L T P C 3 1 0 4

Course Outcomes: At the end of the course, the students will be able to

- 1. apply the various methods to determine the resultant forces and its equilibrium acting on a particle in 2d and 3d.
- 2. apply the concept of reaction forces (non-concurrent coplanar and noncoplanar forces) and moment of various support systems with rigid bodies in 2d equilibrium. reducing the force, moment, and couple to an equivalent force couple system acting on rigid bodies in 2d.
- 3. apply the concepts of locating centroids / center of gravity of various sections/ volumes and to find out area moments of inertia for the sections and mass moment of inertia of solids.
- 4. apply the concepts of frictional forces at the contact surfaces of various engineering systems.
- 5. apply the various methods of evaluating kinetic and kinematic parameters of the rigid bodies subjected to concurrent coplanar forces.

UNIT I - STATICS OF PARTICLES

Fundamental Concepts and Principles, Systems of Units, Method of Problem Solutions, Statics of Particles -Forces in a Plane, Resultant of Forces, Resolution of a Force into Components, Rectangular Components of a Force, Unit Vectors. Equilibrium of a Particle- Newton's First Law of Motion, Space and Free-Body Diagrams, Forces in Space, Equilibrium of a Particle in Space.

UNIT II - EQUILIBRIUM OF RIGID BODIES

Principle of Transmissibility, Equivalent Forces, Vector Product of Two Vectors, Moment of a Force about a Point, Varignon's Theorem, Rectangular Components of the Moment of a Force, Scalar Product of Two Vectors, Mixed Triple Product of Three Vectors, Moment of a Force about an Axis, Couple - Moment of a Couple-Further Reduction of a System of Forces, Equilibrium in Two - Reactions at Supports and Connections.

UNIT III - PROPERTIES OF SURFACES AND SOLIDS

Determination of Areas and Volumes – First moment of area and the Centroid of sections – Rectangle, circle, triangle from integration – T section, I section, Hollow section by using standard formula Second and product moments of plane area –

9+3

9+3

9+3

Rectangle, triangle, circle from integration – T section, I section by using standard formula – Parallel axis theorem and perpendicular axis theorem – Polar moment of inertia – Principal moments of inertia of plane areas – Principal axes of inertia.

UNIT IV - FRICTION

Frictional force – Laws of Coulomb friction – Angle of friction – cone of friction – Equilibrium of bodies on inclined plane – Ladder friction.

UNIT V - DYNAMICS OF PARTICLES

Kinematics - Rectilinear Motion and Curvilinear Motion of Particles. Kinetics-Newton's Second Law of Motion -Equations of Motions, Dynamic Equilibrium, Energy and Momentum Methods - Work of a Force, Kinetic Energy of a Particle, Principle of Work and Energy, Principle of Impulse and Momentum, Impact.

TOTAL: 60 Hours

9+3

9+3

TEXT BOOKS

- Beer Ferdinand P, Russel Johnston Jr., David F Mazurek, Philip J Cornwell, SanjeevSanghi, Vector Mechanics for Engineers: Statics and Dynamics, McGraw Higher Education., 11th Edition, 2017.
- 2. Hibbeler, R.C., "Engineering Mechanics", Vol. 1 Statics, Vol. 2 Dynamics, Pearson Education Asia Pvt. Ltd., (2017).
- 3. Vela Murali, "Engineering Mechanics-Statics and Dynamics", Oxford University Press, 2018.

REFERENCES

- 1. K.L. Kumar, "Engineering Mechanics" Tata McGraw-hill, 2017, 4th Edition
- S.S. Bhavikatti, "Engineering Mechanics", New Age International Publishers, 2006
- 3. R. S. Khurmi, "Engineering Mechanics", S. Chand Publishers, 2018.
- Dr. N. Kotteswaran, "Engineering Mechanics Statics & Dynamics", Sri Balaji Publications 2004.

U19BEE207 - BASIC OF ELECTRICAL ENGINEERING LAB

L T P C 0 0 2 1

Course Outcomes: At the end of the course, the students will be able to

- 1. apply basic circuit laws for calculating electric parameters of DC & AC circuits.
- 2. determine and draw the mechanical, electrical and performance characteristics of electrical machines.
- 3. determine the value of Resistance, Inductance and Capacitance using various bridges.

List of Experiments

- 1. Verification of Ohm's law
- 2. Verification of Kirchhoff's laws
- 3. Measurement of power and power factor for series RLC circuit
- 4. Load characteristics of DC shunt motor
- 5. Speed control of DC shunt motor
- 6. Load test on single phase transformer
- 7. Speed control of three phase induction motor
- 8. Measurement of DC resistance by Wheatstone bridge.
- 9. Measurement of inductance using Anderson bridge
- 10. Measurement of capacitance using Schering bridge
- 11. Measurement of earth pit resistance using megger

TOTAL: 30 Hours

U19PCL208A - PHYSICS AND CHEMISTRY LABORATORY – II

L T P C 0 0 3 1.5

Course Outcomes: At the end of the course, the students will be able to

- 1. apply the principles of optics, electricity and elasticity to determine the Engineering properties of materials.
- 2. analyse the two given brass samples and find which one possesses more copper content in the brass samples and estimate the amount of calcium oxide in cement.
- 3. determine the resistivity of the given fuse wire used for house hold applications. Analyse the two given water samples and find which one possesses more dissolved oxygen and analyse the two given waste waters and find which one possesses more chromium content.

Physics Part - List of Experiments

- 1. Determination of rigidity modulus of the material of wire using torsion pendulum
- 2. Determination of specific resistance of a given wire using Carey Foster's bridge.
- 3. Determination of coefficient of viscosity of liquid by Poiseuille's method.
- 4. Determination of wavelength of prominent colors in mercury spectrum using a spectrometer.
- 5. Determination of the Young's modulus of the given material by uniform bending method.
- 6. Determination of bandgap of a semiconductor diode.

Chemistry Part - List of Experiments

- 1. Estimation of copper in brass by EDTA method.
- 2. Estimation of calcium oxide in cement by EDTA method.
- 3. Determination of dissolved oxygen of water by Winkler's method
- 4. Estimation of chromium in waste water.
- 5. Determination of molecular weight of a polymer by viscosity measurements.
- 6. Estimation of chloride ion present in the sample water by argentometric method.

U19PPL211 - PYTHON PROGRAMMING LABORATORY

L T P C 0 0 2 1

Course Outcomes: At the end of the course, the students will be able to

- 1. implement the algorithms using basic control structures in python
- 2. develop python programs to use functions, strings and data structures to solve different types of problems
- 3. implement persistent storing information through file operations

List of Experiments

- 1. Draw flowchart using any open source software.
- 2. Implement programs with simple language features.
- 3. Implement various branching statements in python.
- 4. Implement various looping statements in python.
- 5. Develop python programs to perform various string operations like concatenation, slicing, indexing.
- 6. Implement user defined functions using python.
- 7. Implement recursion using python.
- 8. Develop python programs to perform operations on list and tuples
- 9. Implement dictionary and set in python
- 10. Implement python program to perform file operations.

TOTAL: 30 Hours

U19GE201 - BASIC APTITUDE - II

L T P C 0 0 2 0

Course Outcomes: At the end of the course, the students will be able to

- **CO1** solve more elaborate problems than those in BA-I in specific areas of quantitative aptitude.
- **CO2** solve problems of greater intricacy than those in BA-I in stated areas of logical reasoning.
- **CO3** demonstrate higher than BA-I level verbal aptitude skills in English with regard to specific topics.

List of Experiments

1. QUANTITATIVE APTITUDE AND LOGICAL REASONING

Solving quantitative aptitude and logical reasoning problems with reference to the following topics:

- a. Ratio and proportion
- b. Partnership
- c. Chain rule
- d. Ages
- e. Profit, loss and discount
- f. Geometry
- g. Area and volume
- h. Data arrangement

2. VERBAL APTITUDE

Demonstrating verbal aptitude skills in English with reference to the following topics:

- a. Jumbled sentences
- b. Reconstructions of sentences (PQRS)
- c. Sentence fillers two words
- d. Idioms and phrases
- e. Spotting errors
- f. Writing captions for given pictures

TOTAL: 24 Hours

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E. / B.Tech. Semester III under Regulations 2019 Branch: Civil Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
		Theory				
1	U19MAT301A	Fourier Analysis and Statistics	3	1	0	4
2	U19CE301	Mechanics of Fluids	2	1	0	3
3	U19CE302	Strength of Materials -I	2	1	0	3
4	U19CE303	Construction Materials and Practices	3	0	0	3
5	U19CE304	Surveying	3	0	0	3
6	U19GE302	Mandatory Course : Environment and Climate Science	2	0	0	0
		Practical				
7	U19CE305	Materials Testing Laboratory	0	0	2	1
8	U19CE306	Survey Laboratory	0	0	2	1
9	U19ENG301	Communication Skill Laboratory	0	0	2	1
10	U19GE301	Soft Skills and Aptitude-I	0	0	2	1
	I			1	Total Credits	20

Approved By

Chairperson, Civil Engineering BoS
Dr.R.Malathy

Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Civil Engineering, Third Semester BE Civil Students and Staff, COE

U19MAT301A	FOURIER ANALYSIS AND STATISTICS	L	Т	Р	С
U19NIA 1501A	FOURIER ANALISIS AND STATISTICS	3	1	0	4

COURSE OUTCOMES (At the end of the course, the students will be able to)

- 1 Express a periodic signal as an infinite sum of sine and cosine wave components using Fourier series.
- 2. Apply the Fourier transform techniques to convert the signal in terms of the frequencies of the waves.
- 3. Represent the data in the form of diagram and graph and analyze them
- 4. Apply the concepts of measure of central tendency, dispersion and skewness to the given data and analyze the results
- 5. Apply the concepts of correlation and regression to the data and analyze the result.

UNIT – I FOURIER SERIES

General Fourier series - Dirichlet's conditions - Change of intervals - Odd and even functions - Half range sine and cosine series - Root mean square - Parseval's identity - Harmonic analysis.

UNIT – II FOURIER TRANSFORMS

Fourier transform pair - Properties - Fourier sine and cosine transforms pair - Properties - Transforms of simple functions - Parseval's identity.

COLLECTION AND REPRESENTATION OF DATA UNIT – III

Collection of data - Primary and secondary data - Diagramatic representation - Simple, subdivided, multiple and bar diagram - Pie diagram - Pictograph - Graphs of frequency distribution - Histogram - Frequency polygon -Frequency curve - Cumulative frequency curve.

UNIT – IV MEASURES OF CENTRAL TENDENCY AND DISPERSION

Measure of central tendency (Simple arithmetic mean, median, mode) – Quartile's – Measure of dispersion (range, inter-quartile range, quartile deviation, mean deviation, standard deviation, coefficient of variation).

UNIT – V CORRELATION AND REGRESSION Simple and rank correlations - Multiple and partial correlations - Linear regression - Curve fitting (straight line and parabola).

Theory: 45 Hours	Tutorial: 15 Hours	Total: 60 Hours
------------------	--------------------	-----------------

TEXT BOOKS:

- T. Veerarajan, "Transforms and Partial Differential Equations", McGraw Hill Publishers, 3rd Edition, 2016. 1.
- S. P. Gupta, "Statistical Methods", Sultan Chand and Sons Publishers, 15th Edition, 2012. 2.

REFERENCE BOOKS:

- 1. E. Krevszig, "Advanced Engineering Mathematics", Wiley Publishers, 10th Edition, Reprint, 2017.
- 2. B. V. Ramana, "Higher Engineering Mathematics", McGraw Hill Publishers, 29th Reprint, 2017.
- 3. S. C. Gupta and V. K. Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand and Sons Publishers, 11th Edition, Reprint, 2019.
- 4. R. A. Johnson and C. B. Gupta, "Miller and Freund's, Probability and Statistics for Engineers", Pearson Publishers, 9th Edition, 2018.
- 5. P. G. Hoel, S. C. Port and C. J. Stone, "Introduction to Probability Theory", Universal Book Stall Publishers, Reprint, 2003.

12

12

12

12

COURSE OBJECTIVES(On completion of the course, the students will be able to):

- 1. Measure the basic properties of fluid.
- 2. Understand the concepts of statics and dynamics of fluid flow.
- 3. Compute the major and minor losses occurring in pipe flow.
- 4. Understand the concepts of boundary layer problem.
- 5. Physical laws in addressing problems in hydraulics

UNIT-I FLUID PROPERTIES AND FLUID STATICS

Definitions-Fluid and fluid mechanics-Dimensions and units-Fluid properties: Density, specific weight, specific volume, specific gravity, temperature, viscosity, compressibility, vapour pressure, capillarity and surface tension-Continuum concept of system and control volume. Fluid statics: concept of fluid static pressure, absolute, gauge, atmosphere and vacuum pressures - Measurements of pressure. Hydrostatic forces on surfaces -forces on planes – centre of pressure.

UNIT-II FLUID KINEMATICS AND DYNAMICS

. Fluid Kinematics: Classification and types of flow - continuity equation (one dimensional differential forms)velocity field and acceleration- Velocity potential function and stream function-Equipotential line- Flow net. Fluid Dynamics : Equations of motion -Euler's equation of motion-Bernoulli's equation: Applications:- Venturi meter-Orifice meter and Velocity measurement (Pitot tube, Current meter, Hot wire and hot film anemometer, Float technique, Laser Doppler velocimetry)- linear momentum equation and its application to pipe bend.

UNIT-III FLOW THROUGH PIPES AND CHANNEL

Flow through Orifices and Mouth pieces. Reynold's experiment -Laminar flow through circular pipe (Hagen poiseulle's). Flow through pipes -Losses of energy in pipes- Major Energy losses (Darcy - Weisbach's and Chezy's Formula)- Minor Energy losses-Hydraulic gradient and total energy line- Flow through compound: Pipes in series and in parallel-Power transmission through pipes- Measurement of flow through notches and weir.

UNIT-IV BOUNDARY LAYER

Boundary layer - Definition- boundary layer on a flat plate - Laminar and turbulent boundary layer- Displacement, energy and momentum thickness - Momentum integral equation-Boundary layer separation and control - Drag on flat plate.

UNIT-V DIMENSIONAL ANALYSIS AND MODEL STUDIES

Fundamental dimensions - Dimensional homogeneity- Method of dimensional analysis: Rayleigh's method and Buckingham π - theorem-Model analysis-Similitude- Types of similarities-Types of forces acting in moving fluid-Dimensionless numbers-Model Laws-Classification of models: Undistorted and distorted models.

TOTAL (L:30+T:15): 45 PERIODS

TEXT BOOKS:

- 1. Bansal R.K., "Fluid Mechanics and Hydraulic Machines", Laxmi Publications, New Delhi, 2017.
- 2. Rajput R.K., "Fluid Mechanics and Hydraulic Machines", S. Chand Publishing Ltd, New Delhi, 2013.

REFERENCES:

- 1. Kumar K.L, "Engineering Fluid Mechanics", Eurasia Publishing House Pvt. Ltd, New Delhi, 1995.
- 2. Modi P.N and Seth, "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard Book House New Delhi. 2004.
- 3. Subramanya K, "Fluid Mechanics and Hydraulic Machines-Problems and Solutions", Tata McGraw Hill Education, New Delhi, 2010.

9

9

9

9 nt

- 1. Comprehend the state of stresses and strains in various structural components under all types of forces.
- 2. Determine principal stresses and planes for an element in two and three dimensional state of stress.
- 3. Draw the Shearing force and bending moment diagrams for beams subjected to all the types of loading.
- 4. Calculate bending and shearing stresses of beam under flexure and shear.
- 5. Ideas of torsional stresses and how to evaluate it in circular sections and its applications in spring analysis.

UNIT-I SIMPLE STRESSES

U19CE302

Simple Stresses and strains -Elastic constants -Volumetric strain- Relationship between elastic constants-Stress Strain diagram for ductile and brittle materials-Analysis of axially loaded members-Composite Bars-Thermal Stresses.

UNIT-II COMPLEX STRESSES

State of Stress in two dimensions-Stresses on inclined planes-Principal Stresses and Principal Planes-Maximum shear stress - Mohr's circle method. State of stree in three dimensions-Stress invariants - Determination of principal stresses and principal planes.

UNIT-III SHEARING FORCE AND BENDING MOMENT

Types of loads, supports, beams-Concept of shearing force and bending moment - Relationship between intensity of load, Shearing Force and Bending moment - Shearing Force and Bending Moment Diagrams for Cantilever, simply supported and overhanging beams with concentrated load, uniformly distributed load, uniformly varying load and concentrated moment.

UNIT-IV STRESSES IN BEAMS

Theory of simple bending-Assumptions and derivation of simple bending equation-Flexural rigidity- Bending and shearing stress distribution diagrams- Composite beams.

UNIT-V TORSION

Theory of Torsion- Assumptions and derivation of torsional equation-Power transmitted-Stresses and Deformations in Solid and Hollow Circular Shafts- Compound shaft- Combined bending and torsion of shafts- Shaft in series and parallel. Open and Closed coiled helical springs- laminated springs - Springs in series and parallel. Design of buffer springs.

TOTAL (L:3+T:15): 45 PERIODS

TEXT BOOKS:

1. Rajput R.K, "Strength of Materials", S.Chand and Co, New Delhi, 2014.

2. Bansal R.K, "Strength of Materials", Laxmi Publications, New Delhi, 2017.

REFERENCES:

- 1. Chandramouli P.N, "Fundamentals of Strength of Materials", PHI Learning Private Limited, New Delhi, 2013.
- 2. Subramanian R, "Strength of Materials", Oxford University Press, New Delhi, 2010.

9

0

0

9

CONSTRUCTION MATERIALS AND PRACTICES

COURSE OUTCOMES (On completion of the course, the students will be able to):

- 1. Familiarize the Building components and its function.
- 2. Choose effective brick, timber, roofing materials in the field.
- 3. Select suitable type of concrete making materials.

U19CE303

- 4. Practice various construction techniques in the field.
- 5. Understand the Function and location of doors, windows and stair case.

UNIT-I INTRODUCTION TO BUILDING CONSTRUCTION

General: Definition of Civil Engineering-Function of Civil Engineer-Division of Civil Engineering- Types of structure : Load Bearing Structure - Framed Structure. Components of building and its function. Site planning: Precaution in selection of sites-Situations and surrounding of site for various types of building-Procedure for site analysis. Sub structure: Functional requirement of a foundation- Bearing capacity of soil- Types of foundation and their construction-Suitability.

UNIT-II BUILDING MATERIALS

Bricks- Manufacturing process-Classification-Testing- Bricks for special use-Refractory bricks. Stone as building material-Criteria for selection-Tests on stones-Application. Timber- Market forms and Industrial forms-Properties-Seasoning and Preservative treatment - Structural steel-Shapes-Applications. Flooring and roofing: Materials-Suitability-Types. Pipes: Types-Sizes-Application. Paints - Varnishes - Distempers - Bitumens. Concrete blocks – Lightweight concrete blocks.

UNIT-III CONCRETE MAKING MATERIALS

Lime – Preparation of lime mortar. Cement - Ingredients - Manufacturing process - Types and Grades - Properties of cement and Cement mortar - Hydration - Compressive strength - Tensile strength - Fineness- Soundness and consistency - Setting time-Storage of cement. Aggregate: Classification-Fine aggregates - River sand – Artificial sand - Properties -Bulking of sand-Fineness modulus. Coarse Aggregates - Crushing strength - Impact strength - Flakiness Index - Elongation Index - Abrasion Resistance-Grading.

UNIT-IV CONSTRUCTION PRACTICES

Introduction about NBC-Specifications, details and sequence of activities and construction co-ordination - Site Clearance - Marking - Earthwork - Masonry: Bonds - Brick masonry-Stone masonry - concrete hollow block masonry - Flooring - Damp proof courses - Construction joints - Movement and expansion joints - Pre cast pavements - Fabrication and erection of steel trusses - Frames - Braced domes - Laying brick -Weather and water proof - Rroof finishes - Acoustic and fire protection.

UNIT-V CONSTRUCTION TECHNIQUES

Lintel: Functions of lintel and sunshade-Types of lintel; Arches: Construction-Elements-Classification. Doors and Windows: Technical terms-Types and their suitability. Stair and stair cases:Terminology-Location and classification of stairs-Requirement of good stair. Form works: Centering and shuttering - Scaffoldings, shoring and underpinning - Slip forms.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Rajput R K., "Engineering Materials", S Chand and Company Ltd, 2014.
- 2. Arora S.P and Bindra S.P, "Building Construction", Dhanpat Rai Publications (P) Ltd, 2015.

REFERENCES:

- 1. Shetty M.S, "Concrete Technology Theory and Practice", S. Chand and Company Ltd, New Delhi, 2014.
- 2. Punmia B.C, "Building Construction", Laxmi Publication, New Delhi, 2016.
- 3. Sahu G.C., Joygopal Jena., "Building Materials and Construction", Mc Graw Hill Education (India) Private Limited, New Delhi, 2015.

T P C 0 0 3

L

3

9

9

9

9

SURVEYING

COURSE OUTCOMES (On completion of the course, the students will be able to):

- 1. Conduct linear and angular measurement survey with the help of chain, tape and compass.
- 2. Determine the horizontal and vertical distance by traversing using theodolite and measure difference in elevation and produce reduced level of the given points.
- 3. Describe the methods of setting out curves in the field and to determine the area and volume of structures.
- 4. Handle total station instrument for making the horizontal and vertical measurements
- 5. Conduct the global positioning system for determining geographical location of the site.

UNIT-I FUNDAMENTALS OF CONVENTIONAL SURVEYING AND LEVELLING

Classifications and basic principles of surveying - Equipment and accessories for ranging and chaining - Methods of ranging - Compass - Types of Compass - Bearing - Types - True Bearing - Magnetic Bearing - Levelling- Principles and theory of Levelling - Datum- Bench Marks - Temporary and Permanent Adjustments- Methods of Levelling- Booking - Reduction - Sources of errors in Levelling - Curvature and refraction.

UNIT-II THEODOLITE AND TRIGNOMETRIC LEVELLING

Introduction- Classification of theodolite- Temporary and permanent adjustments –Measurements of horizontal and vertical angles- Theodolite traversing-Traversing computation-Balancing of traversing-Introduction to omitted measurements. Trignometrical leveling: Heights and distances - Base of the object accessible and inaccessible.

UNIT-III TACHEOMETRIC SURVEYING AND CONTOURS

Introduction-Instruments-Different systems of tachometric measurements- Tacheometer -Stadia Constants - Analytic Lens - Tangential and Stadia Tacheometry surveying-Substense method: Vertical and horizontal measurements. Contour - Contouring - Characteristics of contours - Methods of contouring- Direct method-Indirect method- Contour gradient -Uses of contour plan and map- Measurements of area and volume.

UNIT-IV CURVES AND TRIANGULATION

Curves-Classifications-Elements of curves-Designation of curves-Setting out of simple curves: Linear and instrument method. Triangulation- Classification-Basic systems-Operation-Signals and towers-Satellite station.

UNIT-V ADVANCED SURVEYING

Total station: Features-Recording-Advantages-Fields procedure. Photogrammetry: Aerial photogrammetry-Application. Remote sensing: Classification-principles- Resolution-Sensors-Methods of remote sensing-Image interpretation-Application- Remote sensing in India. Geographic Information Systems: Scope- Purposes- Hardware of GIS-Applications. Global Positioning Systems: GPS elements- Application and uses- Advantages. Introduction about Drone surveying

TEXT BOOKS:

U19CE304

- 1. Punmia B.C, "Surveying, Vol. I and II", Laxmi Publications, 2016.
- 2. Basak N.N, "Surveying and Levelling", Tata Mc Graw Hill Publishing Company Ltd., New Delhi, 2014.
- 3. Kumar S., "Basics of Remote Sensing and GIS", Laxmi Publication (P) Ltd, 2015

REFERENCES:

- 1. Arora K. R, "Surveying Vol. I and II", Standard Book House, 2015.
- 2. Duggal S.K, "Surveying Vol. I and II", Tata McGraw Hill, New Delhi, 2013.
- 3. Kanetkar T.P, "Surveying and Levelling Vols. I and II", United Book Corporation, Pune, 2014.

TOTAL: 45 PERIODS

L T P C 3 0 0 3

9 d.

9

9

9

COURSE OUTCOMES (On completion of the course, the students will be able to):

- 1. Use conventional surveying tools such as chain/tape, compass, dumpy level, theodolite in the field of civil engineering applications such as structural plotting and highway profiling.
- 2. Use modern surveying instruments like total station and GPS.
- 3. Apply the technical concepts and ways to solve engineering problems by conducting experiments.

COURSE CONTENT S

Chain Survey

1. Study of chains and its accessories, Aligning, Ranging, Chaining and Marking Perpendicular offset **Compass Survey**

2. Compass Traversing – Measuring Bearings & arriving included angles

Levelling - Study of levels and levelling staff

3. Reduction of levels (Check and Fly leveling) - Height of collimation and Rise and Fall method.

Theodolite - Study of Theodolite

- 4. Measurements of horizontal angles by reiteration and repetition and vertical angles
- 5. Determination of elevation of an object using single plane method when base is accessible/inaccessible

Tacheometry – Tangential system – Stadia system

6. Measurement of height and distance using stadia and tangential system of tachometry.

Curve Setting

- 7. Setting out of a simple curve using linear method.
- Total Station Study of Total Station, Measuring Horizontal and vertical angles
 - 8. Measurement of angles and height
 - 9. Traverse using Total station and Area of Traverse
 - 10. Determination of distance and difference in elevation between two inaccessible points using Total station

Global Positioning Systems

- 11. Calculation of latitude and longitude using GPS.
- Drones

12. Advance surveying using Drones

Setting out works

13. Centre line marking for single Room and Double Room

U19CE306

COURSE OUTCOMES (On completion of the course, the students will be able to):

- 1. Determine the physical properties of given cement, fine aggregates coarse aggregates and wooden sample.
- 2. Evaluate Modulus of elasticity, torsional strength, hardness and tensile strength of given specimens.
- 3. Apply the technical concepts and ways to solve engineering problems through conducting experiments.

COURSE CONTENT S

Brick/Building blocks: Shape and Size-Efflorescence-Compressive strength-Water absorption- Field test.

Wood: Compressive strength.

Cement: Specific gravity test- Fineness -Consistency test- Setting time- Soundness -Compressive strength of cement mortar cubes- Field test.

Fine aggregate: Specific gravity test- Bulking of sand-Sive Analysis-Fineness modulus.

Coarse aggregate: Specific gravity test-Crushing strength-Impact strength-Shape test-Water absorption- Sive Analysis-Fineness modulus.

Steel: Stress-strain characteristics - Modulus of elasticity -Hardness -Impact strength-Shear strength.

Evaluation of Stiffness on helical spring.

Stiffness and modulus of rigidity of the specimen using torsion testing machine.

Deflection test on cantilever and simply supported beam.

Semester-III	U19 GE301- SOFT SKILLS AND APTITUDE – I U19 GE301- SOFT SKILLS AND APTITUDE – I U T P C Marks 0 0 2 1 100
Course Outcomes	
At the end of the cou	irse the student will be able to:
1. Demonstrate capa	bilities in specific soft-skill areas using hands-on and/or case-study approaches
	f greater intricacy in stated areas of quantitative aptitude and logical reasoning
3. Demonstrate high	er levels of verbal aptitude skills in English with regard to specific topics
1.Soft Skills	 Demonstrating soft-skill capabilities with reference to the following topics: a. Attitude building b. Dealing with criticism c. Innovation and creativity d. Problem solving and decision making
	e. Public speaking
	f. Group discussions Solving problems with reference to the following topics:
2. Quantitative Aptitude and Logical Reasoning	 a. Vedic Maths: Fast arithmetic, multiplications technique, Criss cross, Base technique, Square root, Cube root, Surds, Indices, Simplification. b. Numbers: Types, Power cycle, Divisibility, Prime factors & multiples, HCF & LCM, Remainder theorem, Unit digit, highest power. c. Averages: Basics of averages and weighted average. d. Percentages: Basics of percentage and Successive percentages. e. Ratio and proportion: Basics of R &P, Alligations, Mixture and Partnership. f. Profit ,Loss and Discount: Basic & Advanced PLD g. Data Interpretation: Tables, Bar diagram, Venn diagram, Line graphs, Pie charts, Caselets, Mixed varietics, Network diagram and other forms of data interpretation. h. Syllogism: Six set syllogism using Venn diagram and tick and cross method
3. Verbal Aptitude	 a. Verbal analogy b. Tenses c. Prepositions d. Reading comprehension e. Choosing correct / incorrect sentences f. Describing pictures g. Error spotting

S. And

Department of Placement Training Sona College of Technology. Salem-636 005.

Sona College of Technology, Salem

Department of Sciences (Chemistry)

SEMESTER - III

MANDATORY COURSE

U19GE302 - ENVIRONMENT AND CLIMATE SCIENCE

(Common for CSE, CIVIL, EEE, MECH)

course Outcomes	Course	Outcomes :	
-----------------	--------	-------------------	--

LTPC 2 0 0 0

6

6

At the end of the course, the student will be able to

- 1. state the importance of the acute need for environmental awareness and discuss significant aspects of natural resources like forests, water and food resources.
- 2. explain the concepts of an ecosystem and provide an overview of biodiversity and its conservation.
- 3. explain environmental based pollution their causes, effects and their remedial measures
- 4. discuss their causes, effects and the control measures of Global Warming, Acid Rain, Ozone Layer Depletion
- 5. describe the effect of climate change due to pollution

INTRODUCTION TO ENVIRONMENTAL STUDIES AND NATURAL UNIT I RESOURCES

Definition, Scope and Importance Forest Resources:- Use and over - exploitation, deforestation, Case Studies, Water Resources:- Use and Over-Utilization of Surface and ground water, Floods, Drought, Food Resources- Effects of Modern Agriculture, Fertilizer- Pesticide Problems-Role of an Individual in Conservation of Natural Resources.

UNIT II ECOSYSTEMS AND BIODIVERSITY

Structure and Function of an Ecosystem- Energy Flow in the Ecosystem -Food Chains, Food Webs and Ecological Pyramids.

Introduction to Biodiversity -Value of Biodiversity: Consumptive Use, Productive Use, Social, Ethical, Aesthetic and Option Values -India as a Mega-Diversity Nation - Threats to Biodiversity: Habitat Loss, Poaching of Wildlife, Man-Wildlife Conflicts - Endangered and Endemic Species of India - Conservation of Biodiversity: In-Situ and Ex-Situ conservation of Biodiversity.

UNIT III ENVIRONMENTAL POLLUTION

Definition - Causes, Effects and Control Measures of:- (A) Air Pollution (B) Water Pollution (C) Soil Pollution (D) Marine Pollution (E) Noise Pollution (F) Thermal Pollution, Solid Waste Management- Effects and Control Measures of Acid Rain,- Role of an Individual in Prevention of Pollution.

20.05.2020

B.E. / B.Tech. Regulations 2019

Sona College of Technology, Salem

Department of Sciences (Chemistry)

UNIT IV CLIMATE CHANGE ON THE ENVIRONMENT

Sustainable Development- - Climate Change- Causes and effects of Global Warming - Effect of global warming in food supply, plants, sea, coral reef, forest, agriculture, economy - Kyoto Protocol in reduction of greenhouse gases - Ozone Layer Depletion - mechanism, effects and control measures- Montreal Protocol to protect ozone layer depletion - Rain Water Harvesting - Effect of climate change due to air pollution Case study - CNG vehicles in Delhi

UNIT V EFFECT OF CLIMATE CHANGE ON POLLUTION

Fungal diseases in forests and agricultural crops due to climatic fluctuations - Growing energy needs - effect of climate change due to non-renewable energy resources. Renewable energy resources in the prevention of climatic changes- Effect of climatic changes in ground water table, garments, monuments, buildings, consumption of energy, agriculture and in electric power sector - Carbon credit - carbon footprint - disaster management -Role of an individual to reduce climate change.

TOTAL: 30 HOURS

Text Books:

- 1. Miller, T.G. Jr., "Environmental Science", Wadsworth Pub. Co. 2018
- Anubha Kaushik and Kaushik, "Environmental Science and Engineering" New Age International Publication, 4th Multicolour Edition, New Delhi, 2014.

References:

- S. Radjarejesri et al., "Environmental Science" Sonaversity, Sona College of Technology, Salem, 2018.
- Masters, G.M., "Introduction to Environmental Engineering and Science", Pearson Education Pvt., Ltd., 2nd Edition, 2004.
- 3. Erach, B., "The Biodiversity of India", Mapin Publishing P.Ltd., Ahmedabad, India.
- Erach Bharucha, "Textbook of Environmental Studies for Undergraduate Courses", 2005, University Grands Commission, Universities Press India Private Limited, Hyderguda, Hyderabad – 500029.

Dr. M. Raja Course Coordinator / Sciences

20.05.2020

20.5.200

Dr. C. Shanthi HOD / Sciences

Dr. M. Renuga Chairperson BOS, Science and Humanities

B.E. / B.Tech. Regulations 2019

15.05.2020

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E. / B.Tech. Semester IV under Regulations 2019 Branch: Civil Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
		Theory				
1	U19CE401	Environmental Engineering	3	0	0	3
2	U19CE402	Strength of Materials-II	2	1	0	3
3	U19CE403	Transportation Engineering	3	0	0	3
4	U19CE404	Concrete Technology	3	0	0	3
5	U19CE903	Professional Elective - Elements of Building Planning	3	0	0	3
6	U19CE904	Professional Elective - Energy Efficiency and Green Building Professional	3	0	0	3
7	U19GE403	Mandatory Course : Essence of Indian Traditional Knowledge	2	0	0	-
		Practical			· · ·	
8	U19CE405	Fluid Mechanics Laboratory	0	0	2	1
9	U19CE406	Concrete and Highway Laboratory	0	0	2	1
10	U19CE407	Environmental Engineering Laboratory	0	0	2	1
11	U19GE401	Soft Skills and Aptitude-II	0	0	2	1
					Total Credits	19

Approved By

Chairperson,	Civil	Engine	ering	BoS
--------------	-------	--------	-------	-----

Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Dr.R.Malathy Copy to:-

HOD/Civil Engineering, Fourth Semester BE Civil Students and Staff, COE

U19CE401	ENVIRONMENTAL ENGINEERING	L 3	T 0	P 0	C 3
COURSE OUT	COMES (On completion of the course, the students will be able to):	•	•	Ŭ	
1. Identify the systems.	e quantity and quality of water from various sources and the processes involved in t esign principles of unit operations and processes for water treatment.	he wa	ter coi	nveya	nce
	e design concepts and implementation of sewage transmission systems.				
	ous sewage treatment systems. suitable advanced treatment techniques for water and wastewater treatment.				
UNIT-I	WATER SUPPLY SYSTEM - SOURCE AND CONVEYANCE				9
Objectives- De	ign period - Population forecasting-Water demand -Sources of water and their Cha	aracter	istics	– Sele	ection
-	- Drinking Water quality standards-Intake structures. Conveyance- Laying, jointi				
selection of pur	np and pipe materials – pipe joints -Distribution System of water supply.	•			-
UNIT-II	DESIGN PRINCIPLES OF WATER TREATMENT				9
Objectives-Sele	ction of unit operations and process-Principles of screening, flocculation, se	dimen	tation	, filtr	ation,
disinfection -	vater softening-miscellaneous water treatments (Aeration-Iron & Manganese ren	10val-	Deflu	ıorida	tion)-
Operation and a	naintenance aspects.				
UNIT-III	SEWERAGE SYSTEM: COLLECTION AND TRANSMISSION				9
Common term	s used in sanitary engineering- wastewater characteristics -Quantity of sanitar	y sew	age:	Sourc	es of
wastewater. Qu	antity of storm sewage: factors affecting storm sewage - Quantity of storm-wat	er. De	esign	of sev	vers -
laying, jointing	and testing of sewers-sewer appurtenances- sewer materials and joints.				
UNIT-IV	SEWEAGE TREATMENT AND DESIGN PRINCIPLES				9
	s of treatments and processes- layout of sewage treatment plants -Design principle				
-	rimary sedimentation tank, activated sludge process-Modified activated sludge	proce	ss-mi	scella	neous
	s (oxidation ditch- chlorination-oxidation ponds-aerated lagoons)				
UNIT-V	SEWAGE DISPOSAL AND RURAL SANITATION				9
	sposal methods -Sewage farming - Oxygen sag curve-Streeter Phelps model-Role nitary fittings: one pipe and two pipe system-general layout of house drainage conr			Waste	water
		OTA	L: 45	PER	IODS
TEXT BOOKS					
	"Environmental Engineering Vol.I& II", Khanna Publishers, New Delhi, 2010 & 2				
2. Punmia, E 2010.	.C., Ashok Jain and Arun Jain, "Water Supply Engineering", Laxmi Publications	s (P)]	Ltd., 1	New 1	Delhi,
3. Birdie G.S.	, Birdie J.S, "Water Supply & Sanitary Engineering", Dhanpat Rai Publishing C	Compa	ny (P) Ltd.	New
Delhi, 201	3.	-	2	-	
4. Duggal K.	N., "Elements of Environmental Engineering" S.Chand and Co. Ltd., New Delhi, 2	014.			
REFERENCE					
Delhi, 201					
-	asim and Edward M. Motley Guang Zhu, Water Works Engineering Planning,	Desig	n and	Oper	ation,
	all of India Learning Private Limited, New Delhi, 2009.				
3. Metcalf an	d Eddy- Wastewater Engineering-Treatment and Reuse, Tata Mc.Graw-Hill Comp	any, N	lew D	elhi, 2	2010.

U19CE402 STRENGTH OF MATERIALS II	L	Т	Р	С
STRENGTILOF MATERIALS II	2	1	0	3
COURSE OUTCOMES (On completion of the course, the students will be able to):				
1. Establish the slope and deflection in beams by using various methods.				
2. Determine the forces in plane truss members				
3. Familiarize the behavior of column under axial and eccentric loads.				
4. Examine the problems related to thin and thick cylinders subjected to fluid pressureand theories of failures.	d and s	tudy	the va	arious
5. Determine the stresses due to Unsymmetrical bending of beams, locate the shear center,	and fir	nd the	stres	ses in
curved beams.				
UNIT-I DEFLECTION OF DETERMINATE BEAMS				6+3
Elastic curve – Governing differential equation - Double integration method - Macaulay's metho - conjugate beam method for computation of slope and deflection of determinant beams.	d - Area	a mom	ent m	ethod
UNIT-II ANALYSIS OF TRUSSES				6+3
Determinate and indeterminate trusses - Analysis of pin jointed plane determinate trusses by me	thod of	joints	, meth	od of
sections and tension coefficient method – Analysis of Space trusses by tension coefficient metho		•		
UNIT-III COLUMNS				6+3
Euler's column theory - critical load for prismatic columns with different end conditions - Effe	ctive le	ngth –	limit	ations
- Rankine-Gordon formula - Eccentrically loaded columns - middle third rule - Middle fourth	rule (Core o	of a se	ction
				cuon.
Combined axial and bending stresses				etion.
Combined axial and bending stresses UNIT-IV CYLINDERS AND THEORIES OF FAILURES				<u>6+3</u>
UNIT-IV CYLINDERS AND THEORIES OF FAILURES Thin cylindrical and spherical shells – stresses , change in dimensions and volume -Thick cyl				6+3 eory –
UNIT-IV CYLINDERS AND THEORIES OF FAILURES Thin cylindrical and spherical shells – stresses , change in dimensions and volume -Thick cyl Compound cylinders – shrinking on stresses. Maximum Principal stress theory – Maximum	Principa	al stra	in the	6+3 eory –
UNIT-IV CYLINDERS AND THEORIES OF FAILURES Thin cylindrical and spherical shells – stresses , change in dimensions and volume -Thick cyl Compound cylinders – shrinking on stresses. Maximum Principal stress theory – Maximum Maximum shear stress theory – Total Strain energy theory – Maximum distortion energy theory – Maximum	Principa	al stra	in the	6+3 eory – ems.
UNIT-IVCYLINDERS AND THEORIES OF FAILURESThin cylindrical and spherical shells – stresses , change in dimensions and volume -Thick cyl Compound cylinders – shrinking on stresses. Maximum Principal stress theory – Maximum Maximum shear stress theory – Total Strain energy theory – Maximum distortion energy theory – UNIT-VADVANCED TOPICS	Principa - Applio	al stra	in the probl	6+3 eory – ory – ems. 6+3
UNIT-IV CYLINDERS AND THEORIES OF FAILURES Thin cylindrical and spherical shells – stresses , change in dimensions and volume -Thick cyl Compound cylinders – shrinking on stresses. Maximum Principal stress theory – Maximum Maximum shear stress theory – Total Strain energy theory – Maximum distortion energy theory UNIT-V ADVANCED TOPICS Unsymmetrical bending of beams of symmetrical and unsymmetrical sections – Shear Centre -	Principa - Applio	al stra	in the probl	6+3 eory – ory – ems. 6+3
UNIT-IV CYLINDERS AND THEORIES OF FAILURES Thin cylindrical and spherical shells – stresses , change in dimensions and volume -Thick cyl Compound cylinders – shrinking on stresses. Maximum Principal stress theory – Maximum Maximum shear stress theory – Total Strain energy theory – Maximum distortion energy theory UNIT-V ADVANCED TOPICS Unsymmetrical bending of beams of symmetrical and unsymmetrical sections – Shear Centre - Bach formula – Stresses in hooks.	Principa – Applio curved	al stra cation beams	in the probl s – W	6+3 eory – ory – ems. 6+3 inkler
UNIT-IV CYLINDERS AND THEORIES OF FAILURES Thin cylindrical and spherical shells – stresses , change in dimensions and volume -Thick cyl Compound cylinders – shrinking on stresses. Maximum Principal stress theory – Maximum Maximum shear stress theory – Total Strain energy theory – Maximum distortion energy theory – Maximum distortion energy theory – UNIT-V ADVANCED TOPICS Unsymmetrical bending of beams of symmetrical and unsymmetrical sections – Shear Centre - Bach formula – Stresses in hooks. TOTAL (L:	Principa – Applio curved	al stra cation beams	in the probl s – W	6+3 eory – ory – ems. 6+3 inkler
UNIT-IV CYLINDERS AND THEORIES OF FAILURES Thin cylindrical and spherical shells – stresses , change in dimensions and volume -Thick cyl Compound cylinders – shrinking on stresses. Maximum Principal stress theory – Maximum Maximum shear stress theory – Total Strain energy theory – Maximum distortion energy theory UNIT-V ADVANCED TOPICS Unsymmetrical bending of beams of symmetrical and unsymmetrical sections – Shear Centre - Bach formula – Stresses in hooks. TOTAL (L: TEXT BOOKS:	Principa – Applio curved	al stra cation beams	in the probl s – W	6+3 eory – ory – ems. 6+3 inkler
UNIT-IV CYLINDERS AND THEORIES OF FAILURES Thin cylindrical and spherical shells – stresses , change in dimensions and volume -Thick cyl Compound cylinders – shrinking on stresses. Maximum Principal stress theory – Maximum Maximum shear stress theory – Total Strain energy theory – Maximum distortion energy theory UNIT-V ADVANCED TOPICS Unsymmetrical bending of beams of symmetrical and unsymmetrical sections – Shear Centre - Bach formula – Stresses in hooks. TEXT BOOKS: 1. Rajput R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2014.	Principa – Applio curved	al stra cation beams	in the probl s – W	6+3 eory – ory – ems. 6+3 inkler
UNIT-IV CYLINDERS AND THEORIES OF FAILURES Thin cylindrical and spherical shells – stresses , change in dimensions and volume -Thick cyl Compound cylinders – shrinking on stresses. Maximum Principal stress theory – Maximum Maximum shear stress theory – Total Strain energy theory – Maximum distortion energy theory UNIT-V ADVANCED TOPICS Unsymmetrical bending of beams of symmetrical and unsymmetrical sections – Shear Centre - Bach formula – Stresses in hooks. TEXT BOOKS: 1. Rajput R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2014. 2. Bansal R.K, "Strength of Materials", Laxmi Publications, New Delhi, 2017.	Principa – Applio curved	al stra cation beams	in the probl s – W	6+3 eory – ory – ems. 6+3 inkler
UNIT-IV CYLINDERS AND THEORIES OF FAILURES Thin cylindrical and spherical shells – stresses , change in dimensions and volume -Thick cyl Compound cylinders – shrinking on stresses. Maximum Principal stress theory – Maximum Maximum shear stress theory – Total Strain energy theory – Maximum distortion energy theory UNIT-V ADVANCED TOPICS Unsymmetrical bending of beams of symmetrical and unsymmetrical sections – Shear Centre - Bach formula – Stresses in hooks. TEXT BOOKS: 1. Rajput R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2014. 2. Bansal R.K, "Strength of Materials", Laxmi Publications, New Delhi, 2017. 3. tan.S.S., "Strength of Materials", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2011.	Principa – Applio curved	al stra cation beams	in the probl s – W	6+3 eory – ory – ems. 6+3 inkler
UNIT-IV CYLINDERS AND THEORIES OF FAILURES Thin cylindrical and spherical shells – stresses , change in dimensions and volume -Thick cyl Compound cylinders – shrinking on stresses. Maximum Principal stress theory – Maximum Maximum shear stress theory – Total Strain energy theory – Maximum distortion energy theory UNIT-V ADVANCED TOPICS Unsymmetrical bending of beams of symmetrical and unsymmetrical sections – Shear Centre - Bach formula – Stresses in hooks. TEXT BOOKS: 1. Rajput R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2014. 2. Bansal R.K, "Strength of Materials", Laxmi Publications, New Delhi, 2017. 3. tan.S.S., "Strength of Materials", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2011. REFERENCES:	Principa – Applia curved 30+T:1	al stra cation beam: 5): 45	in the probl s – W PER	6+3 eory – ory – ems. 6+3 inkler
UNIT-IV CYLINDERS AND THEORIES OF FAILURES Thin cylindrical and spherical shells – stresses , change in dimensions and volume -Thick cyl Compound cylinders – shrinking on stresses. Maximum Principal stress theory – Maximum Maximum shear stress theory – Total Strain energy theory – Maximum distortion energy theory UNIT-V ADVANCED TOPICS Unsymmetrical bending of beams of symmetrical and unsymmetrical sections – Shear Centre - Bach formula – Stresses in hooks. TEXT BOOKS: 1. Rajput R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2014. 2. Bansal R.K, "Strength of Materials", Laxmi Publications, New Delhi, 2017. 3. tan.S.S., "Strength of Materials", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2011.	Principa – Applia curved 30+T:1	al stra cation beam: 5): 45	in the probl s – W PER	6+3 eory – ory – ems. 6+3 inkler

Q

9

9

9

COURSE OUTCOMES (On completion of the course, the students will be able to):

1. Explain the various highway development and design cross section elements.

2. Determine the characteristics of pavement materials and design of pavement as per IRC.

3. Design of pavement as per IRC.

4. Apply the concepts of railway planning while designing the permanent way.

5. Plan the locations and design of the airport components.

UNIT-I INTRODUCTION TO HIGHWAY

Introduction to Highway, classification of roads, highway planning-Road cross section-Camber, gradient, super elevation- Sight distance: PIEV theory-Stopping sight distance-Over taking sight distance-Intermediate sight distance. Horizontal curves: Super elevation-Widening of pavements –Introduction to Vertical curves and Transition curves. Types of gradients -grade compensation on curves.

UNIT-II HIGHWAY MATERIALS

Pavement Materials: Desirable properties and testing of highway materials-Soil: California bearing ratio test, Benkelman Beam test, field density test; Aggregate: Crushing, abrasion, impact, water absorption, flakiness and elongation indices and stone polishing value test; Bitumen: Penetration, ductility, viscosity and softening point test.

UNIT-III PAVEMENT DESIGN

Pavement Design: Rigid and flexible pavements- Components and their functions- Factors affecting the design of pavements; Design practice for flexible pavements (IRC method and recommendations-problems)-Design practice for rigid pavements (IRC recommendations - concepts only). Types of road constructions: Water Bound Macadam, bituminous, Granular based Macadam and cement concrete road.

UNIT-IV RAILWAY ENGINEERING

Recent Trends in Indian railways for national development- Permanent way, its components and function: Rails, sleepers and ballast- types of rails, rail fastenings, Gauges, coning of wheels, creeps and kinks. Geometric design of railway tracks-Gradients and grade compensation, super-elevation, widening of gauges in curves (Concepts only) - Points and crossings -Railway stations and yards - Signalling and interlocking, Railway Tunnels

UNIT-V AIRPORT ENGINEERING

Introduction to air transport –Site selection- Airport obstructions and zoning. Components of airport- Runway: Orientation-Wind rose diagrams (theory only)-Runway length-Runway configuration and drainage-Preventive measures in runway, Taxiway -Aircraft parking configuration and parking system - Visual aids.

TOTAL: 45 PERIODS

1. Khanna K, and Justo C E G, "Highway Engineering", 10th Edition, Khanna Publishers, Roorkee, 2018.

2. SaxenaSubhash C, and Satyapal Arora, "A Course in Railway Engineering", Dhanpat Rai and Sons, Delhi, 2020.

3. Khanna S K, Arora M G, and Jain S S, "Airport Planning and Design", Revised 10th edition, Nemchand and Brothers, Roorkee, 2015.

REFERENCES:

TEXT BOOKS:

1.	Kadiyali L.R, "Principles and Practice of Highway Engineering", Khanna Technical Publications, New Delhi, 2013.
2.	Rangwala, "Railway Engineering", Charotar Publishing House, 2017.

3. Rangwala, "Airport Engineering", Charotar Publishing House, 2017.

U19CE404	CONCRETE TECHNOLOGY	L 3	Т 0	P 0	C 3
COURSE OUT	COMES (On completion of the course, the students will be able to):				
	ne properties of fresh and hardened concrete.				
	able admixture in the required field conditions. oncrete mix using ACI and IS code methods.				
	properties and applications of special concretes.				
	e strength and durability of concrete structures with different testing methods.				
UNIT-I	FRESH AND HARDENED CONCRETE				9
Fresh concrete:	Mechanism of hydration-Water-Cement ratio-Factors affecting strength of the	concre	ete-W	orkabi	ility -
Concepts and tes	ts as per Indian codal specifications. Concrete manufacturing stages: Batching - M	Mixing	g -Tra	nspor	tation
- Placing of con	crete -Curing of concrete.Water: Quality of water for mixing and curing - Use o	f sea	water	for m	ixing
Concrete. Harde	ned concrete: Properties and tests-Strength of concrete - Temperature effects	- Cre	ep of	conc	rete -
Thermal properti	es of concrete - Micro cracking of concrete.				
UNIT-II	ADMIXTURES				9
Admixtures -Ne	cessity-Types-Chemical admixtures with specific properties - Accelerators - Reta	arders	-Plast	ticizer	s and
super plasticizer	rs - Air entraining admixtures-Water proofers -Coloring agent. Mineral adm	nixtur	es-Fly	/ ash-	Slag-
Metakaolin-Rice	husk ash-Micro and nano silica-Mineral additives and fillers.				
UNIT-III	MIX DESIGN				9
Mix Design-Fac	tors influencing mix proportion-Variability in test results -Quality control -San	npling	g and	accep	tance
criteria- Design I	Mix and Nominal Mix- Mix design by ACI method and IS method using IS 10262-	-2019			
UNIT-IV	SPECIAL CONCRETES AND CONCRETING METHODS				9
Special concrete	: Light weight concrete - Recycled aggregate concrete - Fibre reinforced concret	te - Po	olyme	r conc	rete -
Ferrocement - R	eady mix concrete- Self compacting concrete - High strength concrete - Geopo	lymer	conc	rete -	High
*	crete-Pervious concrete - Self curing concrete-Bio and bacterial concrete - Sm			e; Coi	ncrete
methods: Extrem	e weather concreting - Vacuum concrete - Underwater concreting - Guniting and s	shoter	eting		
UNIT-V	NON-DESTRUCTIVE TEST AND DURABILITY OF CONCRETE				9
Non destructive	tests: Rebound hammer-Ultra sonic pulse velocity test. Durability of concrete-Me	echani	sm of	corro	sion -
Courses and off.	cts-Permeability of concrete-Shrinkage-Plastic shrinkage -Drying shrinkage-Cl	hemic	al att	ack-S	ulfate
Causes and ente					-
	te structures - chloride attack- Remedial measures Application of IoT in sm	nart cu	ıring	syster	n for
attack of concre concrete.	T	art cu			
attack of concrete.	T				
attack of concrete.	T				
attack of concrete. TEXT BOOKS: 1. Shetty, M.S	T	OTA			
attack of concrete. TEXT BOOKS 1. Shetty, M.S 2. <u>Bhavikatti</u> S	T., "Concrete Technology", Theory & Practice, S.Chand and Co, 2019.	OTA			
attack of concrete. TEXT BOOKS 1. Shetty, M.S 2. <u>Bhavikatti</u> S	T ., "Concrete Technology", Theory & Practice, S.Chand and Co, 2019. S S, "Concrete Technology", I.K. International Publishing House Pvt. Limited, 201 Amit Gupta, Concrete Technology, Jain Book Agency, 2010.	OTA			
attack of concrete. TEXT BOOKS 1. Shetty, M.S 2. Bhavikatti S 3. Gupta.B.L., REFERENCES	T ., "Concrete Technology", Theory & Practice, S.Chand and Co, 2019. S S, "Concrete Technology", I.K. International Publishing House Pvt. Limited, 201 Amit Gupta, Concrete Technology, Jain Book Agency, 2010. : nta P, Paulo, and Moteiro J. M, "Concrete-Micro Structure, Properties and M	TOTA	L: 45	PER	IODS
attack of concre concrete. TEXT BOOKS 1. Shetty, M.S 2. <u>Bhavikatti S</u> 3. Gupta.B.L., REFERENCES 1. Kumar Mel Mcgraw Hi	T ., "Concrete Technology", Theory & Practice, S.Chand and Co, 2019. S S, "Concrete Technology", I.K. International Publishing House Pvt. Limited, 201 Amit Gupta, Concrete Technology, Jain Book Agency, 2010. : nta P, Paulo, and Moteiro J. M, "Concrete-Micro Structure, Properties and M	TOTA	L: 45	PER	IODS
attack of concre concrete. TEXT BOOKSS 1. Shetty, M.S 2. <u>Bhavikatti S</u> 3. Gupta.B.L., REFERENCES 1. Kumar Mel Mcgraw Hil 2. Santhakuma 3. Job Thomas	T ., "Concrete Technology", Theory & Practice, S.Chand and Co, 2019. S S, "Concrete Technology", I.K. International Publishing House Pvt. Limited, 201 Amit Gupta, Concrete Technology, Jain Book Agency, 2010. : nta P, Paulo, and Moteiro J. M, "Concrete-Micro Structure, Properties and M I, 2006 ur A.R., "Concrete Technology", Oxford University Press, New Delhi, 2018. 5, "Concrete Technology", Cengage learning India Pvt Ltd 2015.	TOTA	L: 45	PER	IODS
attack of concre concrete. TEXT BOOKS 1. Shetty, M.S 2. <u>Bhavikatti S</u> 3. Gupta.B.L., REFERENCES 1. Kumar Mel Mcgraw Hii 2. Santhakuma 3. Job Thomas 4. Gambhir M	T ., "Concrete Technology", Theory & Practice, S.Chand and Co, 2019. S S, "Concrete Technology", I.K. International Publishing House Pvt. Limited, 201 Amit Gupta, Concrete Technology, Jain Book Agency, 2010. : nta P, Paulo, and Moteiro J. M, "Concrete-Micro Structure, Properties and M l, 2006 ur A.R., "Concrete Technology", Oxford University Press, New Delhi, 2018.	TOTA	L: 45	PER	IODS

COU	URSE OUTCOMES (On completion of the course, the students will be able to):
	1. Measure the flow, discharge and energy loss in pipes and open channel.
	2. Demonstrate the characteristics curves of pumps and turbines.
	3. Apply the technical concepts and ways to solve engineering problems by conducting experiments.
List	of experiments
	1. Flow through venturey meter and orifice meter
	2. Flow through variable duct area - Bernoulli's experiment
	3. Flow through orifice, mouthpiece and notches
	4. Determination of friction coefficient in pipes
	5. Determination of minor losses
	6. Performance characteristics of centrifugal pumps (Constant speed / Variable speed)
	7. Performance characteristics of reciprocating pump
	8. Characteristics of pelton wheel turbine
	9. Characteristics of francis turbine
	10. Characteristics of kaplan turbine
	11. Study of impact of jet on flat plate (normal / inclined)
	TOTAL: 30 PERIODS
REF	FERENCES:
1.	Modi, P.N and Seth, S.M., Hydraulics and Fluid Mechanics, Standard Book House, Delhi, 2010
2.	Dr. R. K. Bansal, A Text book of Fluid Mechanics and Hydraulic Machines, Laxmi Publications Pvt Ltd, Ninth
	Edition, 2015.

U19CE406	CONCRETE AND HIGHWAY LABORATORY		Т	P	C
01)CE400	CONCRETE AND INGINAT LADORATORT	0	0	2	1
	MES (On completion of the course, the students will be able to):				
•	ous properties of concrete.				
2. Characterize the	aggregate and bitumen used for road construction.				
3. Apply the technie	cal concepts and ways to solve engineering problems by conducting exper	iments.			
TESTS ON FRESH	I CONCRETE				
a) IS methods (102	62-2019)				
b) Slump cone test					
c) Compaction facto	nr test				
d) Self compacting of	concrete test				
TESTS ON HARD	ENED CONCRETE				
a) Compressive Stre	ngth test				
b) Split tensile stren	gth test				
c) Flexural strength	test				
d) Modulus of Elast	icity test				
e) Rebound hammer	(Demonstration)				
f) UPV test (Demon	stration)				
TEST ON AGGRE	GATES				
a) Los Angeles Abra	asion Test				
TEST ON BITUM	EN				
a) Specific Gravity	of Bitumen				
b) Penetration Test					
c) Viscosity Test					
d) Softening Point T	`est				
e) Ductility Test					
		TOTA	L: 30	PERI	ODS
REFERENCE BO	OKS:				
1. Shetty, M.S., "C	oncrete Technology", Theory & Practice, S.Chand and Co, 2019.				
2. S. K. Khanna, C	E G Justo "Highway Engineering" Nem Chand & Bros. New Delhi. 2	018 Rev	ised 1	0th Ed	litior

S. K. Khanna, C. E. G. Justo., "Highway Engineering", Nem Chand & Bros, New Delhi, 2018, Revised 10th Edition
 IS 10262 : 2019, Concrete Mix Proportioning — Guidelines(Second Revision), January 2019
 Concrete Mix Design ACI 211.1-91

COURSE OUTCOMES (On completion of the course, the students will be able to):

- 1. Test the water and waste water and their difference characteristics as per standard.
- 2. Recommend the degree of treatment required for the water and waste water.
- 3. Apply the technical concepts and ways to solve engineering problems by conducting experiments.

List of experiments

- Sampling and preservation methods and significance of characterization of water and waste water(Study experiment).
 Determination of pH,TDS and EC
- Determination of pH,TDS and EC
 Determination of Chlorides
- Determination of Chlorides
 Determination of Hardness
- 5. Determination of Total Solids, Suspended solids, Volatile and Fixed solids
- 6. Determination of Optimum Coagulant Dosage
- 7. Determination of Residual Chlorine & Determination of Available Chlorine in Bleaching powder
- 8. Determination of Dissolved Oxygen
- 9. Determination of B.O.D.
- 10. Determination of C.O.D.

REFERENCES:

11. Introduction to Bacteriological Analysis (Study experiment).

TOTAL: 30 PERIODS

- 1.
 Standard methods for the examination of water and wastewater, APHA, 23rd Edition, Washington, 2017.
- 2. Garg S.K., "Environmental Engineering Vol. I & II", Khanna Publishers, New Delhi, 37th Edition 2019.
- 3. Modi P.N., "Environmental Engineering Vol. I & II", Standard Book House, Delhi-6, 16th Edition 2018.

U10CE002		L	Т	Р	С
U19CE903	ELEMENTS OF BUILDING PLANNING	3	0	0	3
COURSE OUT	COMES (On completion of the course, the students will be able to):				
1. Plan the resi	dential building as per function requirements.				
	bus elements of the building.				
	d the provisions and standards of housing elements.				
	different green building rating systems with real time examples.				
5. Formulate a	nd design the housing layouts by various standards of the building.				
UNIT-I	BUILDING FUNCTIONAL ELEMENTS				9
	menclature of building planning and constructionClassification of building-Site s				
0.	ents of climate-Directions and their characteristics-Orientation of building	gs -F	actors	s affe	ecting
	ling Bye-Laws - Guidelines for planning and drawing of buildings.				
UNIT-II	REQUIREMENTS OF BUILDING				9
	anning of buildings:Aspect-Prospect-Privacy- Sizes of the Rooms-Roominess				
	nce- Economy, Principles on minimum plot sizes and building frontage. Minimums	standa	rd dir	nensio	ons of
	s-Provisions for: lighting, ventilation, fire, means of access and parking.				
UNIT-III	PLANNING OF RESIDENTIAL BUILDING				9
	use-Home-Rooms meant for the various activities: Purposes and requirements; E				
U	ction- Types of Structural frames - Load bearing structures-Framed structures-P		icated	struc	tures.
Introduction to in	ntelligent building. Fixing the position of various building components and justific	ation			
UNIT-IV	GREEN BUILDING				9
	ign criteria-Site sustainability-Efficiency: Water use- Energy-Indoor environi				
	ls-Cost of construction- Comparisons of green building with conventional build	lding-	Asse	ssmen	t and
	een building- Green building certification-Green buildings in India.				
UNIT-V	BUILDING DRAWING				9
	building drawing-Preparation of drawing-Working drawing. Building plans appr				
	ts to be submitted for approval of proposed building to the sanction authority.				
	ite plan, plan, elevation and sectional drawing- Interpretation of Structural, Arc	hitect	ural a	nd sei	vices
drawings.					
		OTA	L: 45	PER	ODS
TEXT BOOKS					
	ramy N. "Building Planning and Drawing", Charator Publishing House Pvt.Ltd, 8th				
	Joygopal Jena, "Building Material s and Construction", McGraw Hill Education	(India	a) Pvt	. Ltd,	New
Delhi, 2015					
REFERENCES					
I. Shah M.G.	Kalec. M. and Patki SY, "Building Drawing", Tata Mcgraw Hill, New Delhi, 2012	2.			

U19CE904	ENERGY EFFICIENCY AND GREEN BUILDING	L	Т	Р	C
01)01)04	EINERGY EFFICIENCY AND GREEN DUILDING	3	0	0	3
	COMES (On completion of the course, the students will be able to):				
	e the importance of energy resources, its availability and conservation. To gain kno	wledge	e abou	t heat	loss
0	air quality requirements in buildings.				
	nd identify the methods adopted to make the building as energy efficient.	matan	: 1 - 1 -		
	owledge about Environmental impact assessment due to buildings and construction bout different green building rating systems with real time examples.	mater	iais.		
•	wareness about clean development mechanism and the role of UNFCCC.				
UNIT-I	INTRODUCTION				9
	concepts, Energy and water as a resource - Criticality of resources - Needs of mo	odern 1	iving	- Heat	: 105
	in buildings- thermal comfort improvement methods - other building comfo				
-	ectrical energy conservation.	105 111	aooi	un qu	un
UNIT-II	ENERGY EFFICIENT BUILDINGS				9
	Building (ZEB) - Nearly Zero Energy Building (NZEB) - energy consumption	dafi	ning 1	0111 01	-
	prtunities and techniques for energy conservation in buildings - water conservation				
• • • •				-	
•	efficient landscaping - green roofing - rainwater harvesting - sanitary fixtures a	-			
	eatment and reuse - process water strategies - adoption to sustainable	resourc	es, p	cocess	an
	nergy Conservation Opportunities in Public and Private Buildings.				
UNIT-III	CONSTRUCTION MATERIALS AND PRACTICES				9
	aterials - Embodied energy, carbon content, and emission of CO_2 , SO_2 and NO_2	_x of bu	iilding	; mate	rial
	onstruction process- Current practice and low environmental impact alternatives.				
UNIT-IV	BUILDING ASSESSMENT SCHEMES				9
Energy efficient	cy ratings & ECBC - 2007 - Various energy efficiency rating systems for build	lings -	LEE), BE	Е,
GRIHA - case	studies - Introduction to BIM.				
UNIT-V	CLEAN DEVELOPMENT MECHANISM				9
Clean Develop	ment Mechanism - CDM Benefits for energy conservation methodology and	proced	lure -	Eligi	oilit
Criteria - UNF	CCC - role of UNFCCC and Government of India - Energy analysis using Equ	iest so	ftware	, day	lig
analysis, insula	tion materials, sunpath and grid analysis - calculation of embodied energy for resi	dential	build	ing as	cas
study					
	<u> </u>	FOTA	L: 45	PERI	OD
TEXT BOOK	5:				
1. Sustainabl	e Building, Design Manual: Published by The Energy and Resources Institute, D	arbari	Seth 1	olock,	IH
Complex,	Lodhi Road, New Delhi-110003.				
-	, Charles, (2016) Sustainable construction : Green Building Design and Delivery J	ohn W	ilev a	nd So	ns.
	G.Z. and DEKAY, Mark, 2001. Sun, Wind & Light - Architectural Design Strat				
	v & sons, Inc.	<i>o</i> , '			
REFERENCE					
	de 2007 (Edition 2008) published by Bureau of Energy Efficiency, New Delhi				
	Energy Efficiency Publications - rating System, TERI PUBLICATIONS .				
2. Dureau 0.	Energy Efficiency rubications - failing system, TERT rubLicATIONS.				

3 GRIHA Rating System, LEED Publications

Semester – IV	UIQ GE401 L T P C Marks SOFT SKILLS AND APTITUDE - II 0 0 2 1 100
	ourse the student will be able to:
1. Demonstrate cap	pabilities in additional soft-skill areas using hands-on and/or case-study approaches
and logical reaso	of increasing difficulty than those in SSA-I in given areas of quantitative aptitude oning and score 65-70% marks in company-specific internal tests
3. Demonstrate gre	eater than SSA-I level of verbal aptitude skills in English with regard to given topics
and score 65-70	% marks in company-specific internal tests Demonstrating soft-skill capabilities with reference to the following topics:
1.Soft Skills	 a. SWOT b. Goal setting c. Time management d. Stress management e. Interpersonal skills and Intrapersonal skills f. Presentation skills g. Group discussions Solving problems with reference to the following topics:
2. Quantitative Aptitude and Logical Reasoning	 a. Equations: Basics of equations, Linear, Quadratic Equations of Higher Degree and Problem on ages. b. Logarithms, Inequalities and Modulus c. Sequence and Series: Arithmetic Progression, Geometric Progression, Harmonic Progression, and Special Series. d. Time and Work: Pipes & Cistern and Work Equivalence. e. Time, Speed and Distance: Average Speed, Relative Speed, Boats & Streams, Races and Circular tracks and Escalators. f. Arithmetic and Critical Reasoning: Arrangement, Sequencing, Scheduling, Network Diagram, Binary Logic, and Logical Connection. h. Binary number System Binary to decimal, Octal, Hexadecimal
3. Verbal Aptitude	Demonstrating English language skills with reference to the following topics: a. Critical reasoning b. Theme detection c. Verbal analogy d. Prepositions e. Articles f. Cloze test g. Company specific aptitude questions

Sona College of Technology, Salem

Department of Sciences (Chemistry)

SEMESTER - IV

MANDATORY COURSE

U19GE403 - ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE

(Common for EEE, CIVIL, MECH and CSE)

L T P C 2 0 0 0

Course Outcomes

At the end of the course, the students will be able to,

- understand, connect up and explain basics of Indian traditional knowledge in modern scientific perspective.
- show an ability to comment critically on curriculum proposals that aim to promote science citizenship/scientific literacy
- communicate using common medical and psychological terminology, including the skill to discuss commonly used medications, supplements, and surgical procedures
- 4. use effective oral and written language skills to communicate scientific data and ideas
- 5. describe the fundamentals of yoga and its importance

Unit I

- · Introduction to Vedas
- Traditional methodology of Veda Sat Angas
- Types of Vedas and their application
- Sub Veda Ayurveda their modern day application

Unit II

- Basics of Applied Vedic Science
- · Modern day application of Vedas and procedure
- Ancient Indian Scientific thoughts
- Introduction to the Vedic language "Sanskrit"

UNIT - III- Modern science

- Introduction modern science
- Objectives modern science
- Architecture in ancient India

UNIT - IV Technology

- · India's contribution to science and technology (from ancient to modern)
- Nobel laureates of Indian origin and their contribution
- India in space
- Latest achievement from Jan 2017

Branciss of the state state

23.01.2021

B.E. / B.Tech. Regulations 2019

of Indian traditional Linearia his in mislers.

Sona College of Technology, Salem

UNIT - V- Yoga and Holistic Health Care

- · Fundamentals of yoga and holistic health
- Human biology
- · Diet and nutrition
- Life management
- Contemporary yogic models case study

References

- V. Sivaramakrishna (Ed.), Cultural Heritage of India-Course Material, Bharatiya Vidya Bhavan, Mumbai, 5th Edition, 2014
- 2. Swami Jitatmanand, Modern Physics and Vedant, Bharatiya Vidya Bhavan
- 3. RN Jha, Science of Consciousness Psychotherapy and Yoga Practices, Vidyanidhi (199) Prakasham, Delhi, 2016.
- Roshan Dalal The Vedas: An Introduction to Hinduism's Sacred Texts, Penguin Books 2014. ISBN 13: 9780143066385
- 5. Raja Ram Mohan Roy, Vedic Physics, Mount Meru Publication ISBN : 9781988207049

Total: 30 HOURS

6

Dr. M. Raja Course Coordinator / Sciences

Dr. C. Shanthi

HOD / Sciences

Dr. M. Renuga Chairperson BOS, Science and Humanities

Tetal Collice ES

Die C. Snanthi

Dr. M. Bennya. Chaltree an 1908 Selection and Brack Juna.

B.E. / B.Tech. Regulations 2019

View Mana Palification 1918. All all all and the

23.01.2021

Regulations-2019

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E. / B.Tech. Semester V Regulations 2019 Branch: Civil Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours
		Theory					
1	U19CE501	Structural Analysis-I	2	1	0	3	45
2	U19CE502	Soil Mechanics	2	1	0	3	45
3	U19CE503	Design of Reinforced Concrete Elements	2	1	0	3	45
4	U19CE907	Elective - Architecture and Town Planning	3	0	0	3	45
5	U19CE908	Elective -Building Services and Safety Regulations	3	0	0	3	45
6	noc21-ce71	Elective -Introduction to Engineering Seismology	3	0	0	3	45
		Open Elective					
7	U19CS1003	Internet of Things	3	0	0	3	45
8	U19ME1004	Renewable Energy Sources	3	0	0	3	45
9	U19ME1006	3D Printing	3	0	0	3	45
		Practical					
10	U19CE504	Survey Camp	0	0	2	1	30
11	U19CE505	Computer Aided Civil Engineering Drawing	0	0	2	1	30
12	U19CE506	Soil Mechanics Laboratory	0	0	2	1	30
13	U19GE501	Soft Skills and Aptitude-III	0	0	2	1	30
				To	tal Credits	22	

Approved By

Chairperson, Civil Engineering BoS

Member Secretary, Academic Counc	i
Dr.R.Shivakumar	

Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Dr.R.Malathy

Copy to:-

HOD/Civil Engineering, Fifth Semester BE Civil Students and Staff, COE

COURS	E CODE	2			CO	URSE I	NAME				L	Т	Р	С
U190	CE501			SI	FRUCT	URAL	ANALY	SIS I			2	1	0	3
Course (Obiective	e (s): Tł	ne Purp	ose of le	arning	this cou	rse is to	:					<u> </u>	
1.	-				-	inciples.								
2.				-		-		. calcula	ting BM	and SF of	on indete	rminate ł	peams	
3.						ram for			-	und DI V	Sir indete		Journs.	
<u> </u>		•			-	diagran				16				
4 . 5.			-	nd suspe				cici iiiiia		15.				
		·					المعدام ما		he ahle	4				
Course (1. (1	1	· · · 1	
CO1				•	axial loa	ad, shear	, flexure	e, Torsic	on and .c	ompute o	leflectior	i by using	g principl	e of
COA			rtual wo	. ,		•	1 0		1	C.			/ 17	2
CO2		pply Theorem of three moment equation to analyse of propped cantilever, fixed and continuous beams (K3)												
CO3		raw influence lines for statically determinate structures and calculate critical stress resultants(K1)												
CO4	Underst	derstand Muller Breslau principle and draw the influence lines for statically indeterminate beams.(K2)												
CO5	Analyse	e three h	ninged, t	wo hing	ed and f	ixed arc	hes and	Analyse	the susp	pension b	ridges w	ith stiffer	ning (K4))
Knowled	ge Leve	I:K1 – F	Rememb	er K2	– Unde	rstand [.] H	X3 - An	nlv∙ K	4 - Ana	lvze [.] K5	– Evalua	te:		
CO – PC	-					1500110.1		<u></u>		1920.110	Liturau			
	, mappi	-5				1	Pos						PS	$\Omega_{\rm f}$
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	POS
CO1	3	3	2	2	2	-	107	1	2	1010	3	2	3	2
CO1	-	3	2	2	2	_	1	2	2	-	3	1	3	2
CO2 CO3		-			2		-	2			-	1		
	3	3	2	2	-	-	2	-	-	-	3	-	3	2
CO4	-	-	3	3	1	-	2	-	-	-	3	1	3	2
CO5	3	3	2	2	2	2	-	2	-	2	3	2	3	2
CO	1.8	2.4	2.2	2.2	1.4	0.4	1	1	0.8	0.6	3	1.2	3	2
(Avg)	lation Le	wol	l	1:Slight	(Low)		2	Modora	ite (Med	ium)		2.Subst	tantial (H	igh)
Corre		evel.		1.Singin	(LOW)		۷.	.wiouera	ite (ivieu	iuiii)		5.5u08	talitial (11	ligii)
TIN	IT-I	ENI	FDCVI	PRINCI	DIEC								6+3 H	Loung
Strain en							due to	wiel les	d (and	ual audd	an and i	mmaat la		
flexure a	•••			•		•••						-		
Applicati			-				-			-				
and temp				-	-		in ucter	minate	ocams,		ines and j		sscs - iac	K OI III
	T-II			MINAT									6+3 H	lours
Concept							me Fiv	ed and	momen	s and ray	octions	Sinking		
supports	•											-		
	T-III									ND TRU	-	moment	6+3 H	
nfluence												and bend		
Calculati				•									-	
moment ·									iicu iiio	ving ioac	15 - a050	Jute ma	xiiiiuiii U	chung
	T-IV					I Jointed	-		REAMS				6+3 H	lours
Indeterm											ng Mom	ent and s		
compone				-	-				-		-		uppon n	caction
-	IT-V					ION BR		-		<i>ic)</i> , and i			6+3 H	lours
Introduct									abolic	eircular e	rches ar	d semi		
Determin							-							
cable – L			-								-		-	
cable – L	engui 01	Ca010 -	anciora	50 OI SUS	pension	caules -	Suitell	ing gilu	015 - Ca			-	ΓΑL: 45	
ТЕУТ Р	OOVS.											10	TAL: 45	Hours
TEXT B 1.		atti S S	Structur	ral Analy	vsis Vol	1&2 1	VikasPul	olishing	House I	Pvt.Ltd.,N	JewDelh	-4 2014		
												т, <i>2</i> 014	•	
2.	Vazrani	I.V.N A	nd Ratw	anı,M.N	1, Analy	sis of St	ructures	, Vol.IÍ,	Khanna	Publiser	s,2015.			

REFER	ENCES:
1.	Negi L.S. &Jangid R.S., "Structural Analysis", Tata McGraw Hill Publications, New Delhi, 2003.
2.	Punmia B.C, Ashok Kumar Jain and Arun Kumar Jain, "Theory of structures", Laxmi Publications Pvt. Ltd., New Delhi, 13th Edition 2017.
3.	Bhavikatti, S.S, Structural Analysis, Vol.1 & 2, Vikas Publishing House Pvt.Ltd., NewDelhi-4, 2014.

	RSE CODE	E			CO	URSE	NAME				L	Т	Р	С
U19	9CE502				SOII	L MECH	HANICS	5			2	1	0	3
Course	e Objectivo	e (s): Th	ie Purp	ose of le	arning	this cou	rse is to	:			Į	Į		1
1.	Describe	the nati	ure of so	il proble	ems enco	ountered	in Civil	l Engine	ering an	d give an	overall j	preview o	of the bel	naviour
	of soil.	mainson	ltr tha d		ahorior			maata al	facilha	horiona	on ho un	damataad	hy cons	idanina
2.	Studying the intera	-	•	•			•	spects of	r soll be	naviour c	can be un	aerstooa	by cons	idering
3.	Describe							f stresse	es betwee	en soil pa	rticles.			
4.	To impar													
5.	To famili		-		-		l concep	ts of con	mpaction	n and con	solidatio	n		
Course	e Outcome						-		-					
CO1	Characte	rize the	soil base	ed on inc	lex and	engineei	ing prop	perties. ((K1)					
CO2	Examine	the soil	water a	nd water	flow th	rough so	oil. (K3))						
CO3	Compute	the stre	ess distri	bution o	f soil un	der diffe	erent loa	ding coi	nditions.	(K2)				
CO4	Determin	Determine shear strength parameters of soils. (K5)												
CO5	Estimate	Estimate the time rate of settlement due to consolidation.(K4)												
Knowl	edge Leve	l: K1 – 1	Rememb	ber: K2	2 - Under	erstand:	K3 – A	Apply:	K4 – A	nalyze:	K5 – Ev	aluate:		
	PO Mappi							11 5						
		0				1	Pos						PS	Os
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	POS
C01	2	-	-	-	-	3	2	1	-	-	-	-	2	3
CO2	2	_	_	-	3	-	_	_	2	_	-	-	2	3
CO3	3	3	_	-	-	-	_	_	2	_	2	-	2	3
CO4	3	2	_	-	_	2	-	_	-	_	2	-	2	3
CO5	3	3	-	-	-	-	-	_	-	_	2	2	2	3
CO (Avg)	2.6	1.6	-	-	3	5	0.4	0.2	0.8	-	1.2	0.4	2	3
Cor	relation Lo	evel:	1	1:Slight	(Low)	ļ	2:	:Modera	te (Med	ium)	1	3:Subst	antial (H	ligh)
				U	× /				× ·	,			,	0 /
U	NIT-I	SO	L CLA	SSIFIC	ATION								6+3 I	Hours
Orgin o	of soil and	rock-So	oil forma	tion-Ge	ological				-			-	eering pu	ırposes
	ignificance		-			-	-	-				-		
	ication-Un		11 class1	fication	system	Field 1	dentifica	ation an	id classi	fication	of soil-S	Selection	of foun	dation-
	ce of soil r	-						T T/DX7					()]	T
	NIT-II ater-Static					D PERI			oil Cor	illory at	ross Dors	w'a low		Hours
	rement (Co													
	e-Introduci			-					our tests	-1 actors	minuenei	ing perink	aonity 0	1 30113-
	NIT-III							liets.					6±3 I	Hours
								act press	sure dist	ribution-	Boussin	esa's the		
	CHSEPTOINTOF		-		-			-				-	ory (pon	n iouu,
Stress of		load)-		uuru bui	laryono	Biruin	eu uepoi	5.65 0.50			indence	entar t.	(.) I	Hours
Stress of line loa	ad and UDI			RENG	Г Н								0+1 F	
Stress of line loa	ad and UDI NIT-IV	SH	EAR ST			ils-Moh	's circle	e - Moł	hr-Coulo	mb failu	re theory	v-Measur		
Stress of line loa UN Shear s	nd and UDI NIT-IV strength of	SH cohesi	EAR ST ve and	cohesior	nless so						-		ement of	f shear
Stress of line loa UN Shear s strength	nd and UDI NIT-IV strength of h: Direct sl	SHI cohesi near, Tr	EAR ST ve and i-axial co	cohesior ompress	iless so ion, Uno	confined					-		ement of	f shear
Stress of line loa UN Shear s strength liquefac	nd and UDI NIT-IV strength of	SHI cohesi near, Tr tial-Pla	EAR ST ve and i-axial co xis appli	cohesior ompress cation ir	iless so ion, Unc i shear s	confined trength.	compre	essive str			-		ement of re param	f shear neters –
Stress of line loa UN Shear s strength liquefac UN	nd and UDI NIT-IV strength of h: Direct sl ction poten NIT-V	SHI cohesi near, Tr tial-Plat	EAR ST ve and i-axial co xis appli MPACT	cohesion ompress cation ir FION A	nless so ion, Uno n shear s . ND CO	confined trength. NSOLI	compre	essive str	rength V	ane shea	r test; Po	re pressu	ement of re param 6+3 I	f shear neters – Hours
Stress of line loa UN Shear s strength liquefac UN Soil co	ad and UDI NIT-IV strength of h: Direct sl ction poten NIT-V ompaction-'	SHI cohesi near, Tr tial-Pla CO Theory,	EAR ST ve and i-axial co xis appli MPACT laborate	cohesion ompress cation ir FION A ory and	nless so ion, Uno n shear s ND CO field co	confined trength. NSOLI ompactio	compre DATIO on meth	essive str N ods- Fa	ctors in	ane shea	r test; Po	tion beh	ement of re param 6+3 I aviour of	f shear heters – Hours f soils.
Stress of line loa UN Shear s strength liquefac Soil co Compo	nd and UDI NIT-IV strength of h: Direct sl ction poten NIT-V	SHI cohesi hear, Tr tial-Pla CO Theory, ettlemen	EAR ST ve and i-axial co xis appli MPACT laborato nt - Imn	cohesion ompress cation ir FION A ory and nediate a	nless so ion, Uno n shear s ND CO field co and con	confined trength. NSOLI ompactio solidatic	DATIO DATIO on meth	N Nods- Fa	ctors in: Terzagh	ane shea	r test; Po	tion beh	ement of re param 6+3 I aviour of	f shear heters – Hours f soils.

TEXT I	BOOKS:
1.	Punmia B.C, "Soil Mechanics and Foundations", Laximi Publications Pvt. Ltd, New Delhi, 2019.
2.	Murthy, V.N.S., "Soil Mechanics and Foundation Engineering", CBS Publishers Distribution Ltd., New Delhi. 2015
REFER	ENCES:
1.	Coduto, D.P., "Geotechnical Engineering – Principles and Practices", Prentice Hall of India Pvt.Ltd. New Delhi, 2017.
2.	Das, B.M., "Principles of Geotechnical Engineering". Brooks / Coles / Thompson Learning Singapore, 8th Edition, 2013
3.	McCarthy, D.F., "Essentials of Soil Mechanics and Foundations". Prentice-Hall, 2006.

U19C	E CODE				CO	URSE N	NAME				L	Т	Р	С
	CE503			D	ESIGN	OF RC	ELEMI	ENTS			2	1	0	3
Course C	Objective	e (s): Tł	ne Purp	ose of le	arning	this cou	rse is to	:			J	J	Į	ļ
1.	Provide	knowle	edge on	the basic	design	principle	es and d	esign ph	ilosophy	of RC s	ections.			
2.	Impart	he basi	c knowl	edge in t	he desig	n of bea	ms.							
3.	Aware t	he basi	c Princip	ole in the	e design	and deta	il the sla	ab and st	taircase.					
4.	Develop	the stu	idents to	know tl	he desig	n and de	tail of co	olumns.						
5.	Interpre	t the stu	idents to	design	the footi	ing and s	sketch th	ne detaili	ing for it	•				
Course C	Dutcome	(s) (CC)s): At t	he end o	of this c	ourse, tl	he stude	ents will	be able	to:				
CO1	Explain	the var	ious phi	losophie	s of des	ign of co	oncrete s	tructure	s, related	l IS Code	es (K2)			
CO2	Design	the stru	ctural el	ement (b	beam) fo	or a build	ling for t	flexure,	shear, bo	ond and t	orsion (F	K4)		
CO3	Know t	he desig	gn of sla	bs and st	aircase	and their	detailin	ng (K4)						
CO4	Gain kn	owledg	e of the	design c	of colum	ns and th	heir deta	iling (K	4)					
CO5	•	0		tings and		0								
Knowled	lge Level	: K1 – 1	Rememb	ber: K2	2 - Unde	erstand:	K3 – A	Apply:	K4 - At	nalyze:	K5 - Ev	aluate:		
CO - PO) Mappir	ng											-	
COs			1	n			Pos				1	1	PS	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	POS
CO1	2	1	1	2	1	-	-	3	2	3	3	3	3	3
CO2	2	3	2	3	1	-	-	3	2	2	3	3	3	3
CO3	2	3	2	3	1	-	-	3	2	2	3	3	3	3
CO4	2	3	2	3	1	-	-	3	2	2	3	3	3	3
CO5	2	3	2	3	1	-	-	3	2	2	3	3	3	3
CO (Avg)	2	2.6	1.8	2.8	1	-	-	3	2	2.2	3	3	3	3
	lation Le	evel:	ļ	1:Slight	(Low)	<u> </u>	2:	Modera	te (Med	ium)	ļ	3:Subst	tantial (H	ligh)
				U	· /					,			~	0 /
UN	IT-I	INT	RODU	CTION									6+3 H	Iours
Material	strength	and pro	perties -	- Stress-	strain c	haracter	istics of	concrete	e and ste	el -grade	es of con	crete and	steel. T	ypes of
loads and	d load co	ombinat	ions. Fa	actor of	Safety.	Evolutio	on of di	fferent	design p	hilosoph	nies on d	esign of	RCC se	ctions.
Working			-		eams, L	imit stat	te metho	od: Lim	it state-	Characte	ristic stre	ength - 1	Loads an	d load
combinet	ion- Part		·											
	TT TT	DEC			AC								6+3 E	lours
UNI			SIGN O											
UNI Design of	f singly a	and dou	bly rein	forced s	ections				jected to	o flexure	, shear a	nd torsio	n- Flexu	
UNI Design of anchorage	f singly a e bonds-l	and dou Develop	ibly rein oment le	forced s ngth- De	ections etailing of	of reinfo	rcement		jected to) flexure	, shear a	nd torsio		ral and
UNI Design of anchorage UNI	f singly a e bonds-l T-III	and dou Develop DES	ibly rein oment le SIGN O	forced s ngth- De F SLAB	ections etailing of AND S	of reinfo	rcement CASE	•					6+3 H	ral and Iours
UNI Design of anchorage UNI Introduct	f singly a e bonds-l T-III ion - Typ	and dou Develop DES Des of sl	ibly rein oment le SIGN O lab - Des	forced s ngth- De F SLAB sign of c	ections etailing of AND S one way	of reinfo STAIR (slab- De	rcement C ASE esign of	two wa	y slabs v	vith vario	ous bound	dary con	6+3 E ditions -	ral and Iours Design
UNI Design of anchorage UNI Introduction	f singly a e bonds-l T-III ion - Typ ever slab-	and dou Develop DES Des of sl	ibly rein oment le SIGN O lab - Des	forced s ngth- De F SLAB sign of c	ections etailing of AND S one way	of reinfo STAIR (slab- De	rcement C ASE esign of	two wa	y slabs v	vith vario	ous bound	dary con	6+3 E ditions -	ral and Iours Design
UNI Design or anchorag UNI Introducti of cantile reinforce	f singly a e bonds-l T-III ion - Typ ever slab- ment	and dou Develop DES Des of sl Check	ably rein oment le SIGN O ab - Des for shea	forced s ngth- De F SLAB sign of c ar and de	ections etailing of AND S one way eflection	of reinfo STAIR (slab- De	rcement C ASE esign of	two wa	y slabs v	vith vario	ous bound	dary con	6+3 H ditions - ase-Detai	ral and Iours Design ling of
UNI Design of anchorage UNI Introduction of cantile reinforcer UNI	f singly a e bonds-l T-III ion - Typ ever slab- ment T-IV	and dou Develop DES oes of sl Check DES	ibly rein oment le SIGN O ab - Des for shea	forced s ngth- De F SLAB sign of c ar and de F COLU	ections etailing of AND S one way eflection	of reinfo STAIR (slab- De -Detaili	rcement CASE esign of ng of re	two wa: inforcen	y slabs v nent. De	vith vario	ous bound doglegge	dary con d stair ca	6+3 H ditions - ase-Detai 6+3 H	ral and Iours Desigr ling of Iours
UNI Design or anchorage UNI Introducti of cantile reinforcer UNI Estimatio	f singly a e bonds-l T-III ion - Typ ever slab- ment T-IV on of ef	and dou Develop DES Des of sl Check DES fective	ibly rein oment le SIGN O lab - Des for shea SIGN O length	forced s ngth- De F SLAB sign of c ur and de F COLU of a c	ections etailing of AND S one way eflection UMN olumn	of reinfo STAIR (slab- De a-Detaili – Code	rcement CASE esign of ng of re require	two way inforcen	y slabs v nent. De Slender	vith vario esign of o mess lim	ous bound doglegge nits-minin	dary cond d stair ca mum eco	6+3 E ditions - ase-Detai 6+3 E centricitie	ral and Iours Design ling of Iours es and
UNI Design or anchorage UNI Introducti of cantile reinforcer UNI Estimatio reinforcer	f singly a e bonds-l T-III ion - Typever slab- ment T-IV on of ef ments; C	and dou Develop DES DES of sl Check DES fective ompres	bly rein oment le SIGN O ab - Des for shea SIGN O length sion me	forced s ngth- De F SLAB sign of c ur and de F COLU of a c mbers-	ections etailing of AND S one way eflection UMN olumn Classific	of reinfo STAIR (slab- De - Detaili - Code cation of	rcement CASE esign of ng of re require f column	two way inforcen ements: ns-Desig	y slabs v nent. De Slender	vith vario esign of o mess lim	ous bound doglegge nits-minin	dary cond d stair ca mum eco	6+3 E ditions - ase-Detai 6+3 E centricitie	ral and Iours Desigr ling of Iours es and
UNI Design of anchorage UNI Introduction of cantile reinforcer Estimation reinforcer eccentric	f singly a e bonds-l T-III ion - Typever slab- ment T-IV on of ef ments; C	and dou Develop Des of sl Check DES fective ompres using in	bly rein oment le SIGN O ab - Des for shea SIGN O length sion me teraction	forced s ngth- De F SLAB sign of c ur and de F COLU of a c mbers- n curve;	ections etailing of B AND S one way eflection UMN olumn Classific Detailin	of reinfo STAIR (slab- De - Detaili - Code cation of	rcement CASE esign of ng of re require f column	two way inforcen ements: ns-Desig	y slabs v nent. De Slender	vith vario esign of o mess lim	ous bound doglegge nits-minin	dary cond d stair ca mum eco	6+3 H ditions - ase-Detai 6+3 H centricitie umn: Ax	ral and Iours Desigr ling of Iours es and ial and
UNI Design of anchorage UNI Introducti of cantile reinforcer Estimatio reinforcer eccentric UNI	f singly a e bonds-l T-III ion - Typ ever slab- ment T-IV on of ef ments; C loading t	and dou Develop Des of sl Check DES fective ompres using in DES	bly rein oment le SIGN O lab - Des for shea SIGN O length sion me teraction SIGN O	forced s ngth- De F SLAB sign of c ur and de F COLU of a c mbers- n curve; F FOO	ections etailing of 3 AND S one way eflection UMN olumn Classific Detailin FING	of reinfo STAIR (slab- De a-Detaili – Code cation of g of rein	rcement CASE esign of ng of re require f column forceme	two way inforcen ements: ns-Desig ent.	y slabs v nent. De Slender 3n of sh	vith vario esign of o mess lim ort colur	ous bound doglegge nits-minin nn and L	dary cone d stair ca mum ece long cole	6+3 E ditions - ase-Detai 6+3 E centricitie umn: Axt	ral and Iours Desigr ling of Iours es and ial and Iours
UNI Design of anchorage UNI Introducti of cantile reinforcer Estimatio reinforcer eccentric UNI	f singly a e bonds-l T-III ion - Typ ever slab- ment T-IV on of ef ments; C loading u IT-V ion -Typ	and dou Develop Des of sl Check DES fective ompres using in DES es of fo	bly rein oment le SIGN O lab - Des for shea SIGN O length sion me teraction SIGN O poting- S	forced s ngth- De F SLAB sign of c ar and de F COLU of a c mbers- n curve; F FOO Selection	ections etailing of 3 AND S one way eflection UMN olumn Classific Detailin FING of foot	of reinfo STAIR (slab- De a-Detaili - Code cation of g of rein ing- Soi	rcement CASE esign of ng of re require f columi forceme l pressu	two way inforcen ements: ns-Desig ent. res unde	y slabs v nent. De Slender gn of sh er isolate	vith vario esign of o mess lim ort colur ed footin	ous bound doglegge nits-minin nn and I gs-Gener	dary cond d stair ca num eco long colu	6+3 H ditions - ase-Detai 6+3 H centricitie umn: Axi 6+3 H n conside	ral and Iours Design ling of Iours es and ial and Iours rations
UNI Design of anchorage UNI Introduction of cantile reinforcer eccentric UNI Introduction	f singly a e bonds-l T-III ion - Typ ever slab- ment T-IV on of ef ments; C loading u IT-V ion -Typ le requir	and dou Develop Des of sl Check DES fective ompres using in DES es of fo	bly rein oment le SIGN O lab - Des for shea SIGN O length sion me teraction SIGN O poting- S	forced s ngth- De F SLAB sign of c ar and de F COLU of a c mbers- n curve; F FOO Selection	ections etailing of 3 AND S one way eflection UMN olumn Classific Detailin FING of foot	of reinfo STAIR (slab- De a-Detaili - Code cation of g of rein ing- Soi	rcement CASE esign of ng of re require f columi forceme l pressu	two way inforcen ements: ns-Desig ent. res unde	y slabs v nent. De Slender gn of sh er isolate	vith vario esign of o mess lim ort colur ed footin	ous bound doglegge nits-minin nn and I gs-Gener	dary cond d stair ca num eco long colu	6+3 H ditions - ase-Detai 6+3 H centricitie umn: Axi 6+3 H n conside	ral and Iours Design ling of Iours es and ial and Iours rations

TEXT B	SOOKS:
1.	GambhirM.L, "Fundamentals of Reinforced Concrete Design", Prentice Hall of India Pvt. Ltd, New Delhi 2011
2.	SinhaS.N,"Reinforced Concrete Design", Tata McGraw-Hill Publishing Company Ltd, New Delhi 2002
REFER	ENCES:
1.	VargheseP.C, "Limit State Design of Reinforced Concrete", Prentice Hall of India Pvt. Ltd, New Delhi 2010
2.	UnnikrishnaPillaiS, DevdasMenon, "Reinforced Concrete Design", Tata McGraw-Hill Publishing Company Ltd, New Delhi 2009
3.	Ashok Kumar Jain, "Reinforced Concrete Limit State Design", Nem Chand Brothers, 2012
4.	Krishna Raju N, Pranesh R N, "Design of Reinforced Concrete Structures", CBS Publishers & Distributors, New Delhi2018

U19C One-week	'E504			COURSE NAME										C	
One-week	U19CE504		SURVEY CAMP									0	2	1	
	-	-					-	ties outs	ide of th	e campus	in the fo	ollowing	activities	5	
during fir															
Course C	-				-				6.		11 1	1	1		
1.								ning to so	ome of t	he real w	orld prob	olems suc	h as		
2.	triangulation, contouring, Total Station, Drones etc.,To train the students to appreciate practical difficulties in surveying on the field.														
2. 3.	Providing an opportunity to the students to develop team spirit.														
		<u> </u>		·			-	-	be able	to:					
CO1	 Outcome (s) (COs): At the end of this course, the students will be able to: Calculate the horizontal, vertical angles by triangulation and trilateration method. (K3) 														
CO2	Determine the Reduced levels and area by theodolite and total station (K5)														
CO3	Draw the contour maps and preparing the maps using drones. (K2)														
Knowled	edge Level: K1 – Remember: K2 – Understand: K3 – Apply: K4 – Analyze: K5 – Evaluate:														
CO – PO) Mappir	ıg													
COs	Pos											PSOs			
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2	
CO1	3	-	-	-	-	3	2	3	3	3	3	3	3	-	
CO2	3	-	-	-	3	3	2	3	3	3	3	3	3	3	
CO3	3	-	-	-	3	3	2	3	3	3	3	3	3	3	
CO (Avg)	3	-	-	-	2	3	2	3	3	3	3	3	3	2	
Correl LIST OF	lation Le			1:Slight	(Low)		2	:Modera	te (Med	ium)		3:Subst	antial (H	High)	
• Levelli • Total S • Drone	Block of Longitu Station	ulation ration contouri udinal a ution of 1g	nd cross Area usi	ing Tota											
	repurut		opogrupi	ily map	using D	lones						ТО	FAL: 3 0	Hours	
TEXT B	OOKS:											10		110013	
1.	Punmia B.C, "Surveying, Vol. I and II", Laxmi Publications, 2016.														
2.	Basak N.N, "Surveying and Levelling", Tata Mc Graw Hill Publishing Company Ltd., New Delhi, 2014														
3.	Kumar	S., " Ba	sics of F	Remote S	Sensing	and GIS	", Laxm	i Public	ation (P) Ltd,201	5				
REFERE	ENCES:														
1.	Arora K. R, "Surveying Vol. I and II", Standard Book House, 2015														
2.	Duggal	S.K, "S	urveyin	g Vol. I	and II",	Tata Mo	cGraw H	Iill, New	v Delhi,	2013.					
3.	Kanetka	ar T.P, ʻ	'Surveyi	ng and I	Levelling	g Vols. l	and II"	, United	Book C	Corporatio	n, Pune,	2014			

COURSE CODE		2	COURSE NAME									Т	Р	С	
U19CE505		CO	COMPUTER AIDED BUILDING DRAWING LABORATORY									0	2	1	
Course (Objective	e (s): Th	e Purp	ose of le	arning	this cou	rse is to	:					Į	ļ	
1.	Practice	the stu	dents to	draft the	e plan, e	levation	and sec	tional vi	ews of b	ouildings.					
2.	Incorporate the engineering in developing and satisfying orientation and functional requirements as per National Building Code.													ional	
3.	Provide	orienta	tion on 1	recent te	chnolog	ies and i	industry	practice	s.						
Course (-									
CO1	Apply the principles of planning and use bylaws for building planning.(K3)														
CO2	Draw plan, elevation and section for various types of buildings.(K5) Analyze the problems and provide solutions with engineering concepts and emerging technologies.(K4)														
CO3	Analyze	e the pro	blems a	nd prov	ide solut	tions wit	h engine	eering co	oncepts	and emer	ging tech	nnologies	.(K4)		
Knowled	lge Level	:K1 − R	Rememb	er: K2	- Unde	rstand: H	K3 – Ap	ply: K	4 – Anal	lyze: K5	– Evalua	te:			
CO – PC) Mappir	ng											I		
COs	DCI	DCC	DCA	Pos						DOID	PSOs PSOs				
CO1	PO1 3	PO2	PO3	PO4	PO5	PO6	PO7 3	PO8	PO9	PO10	PO11	PO12	PSO1	POS	
CO1 CO2	3	2	3	1	2	1	3	1	1	-	-	2 2	1	2	
COe3	3	2	3	1	2	1	2	_	1	_	_	1	1	2	
CO	3	1.67	3	1	1.67	1	2.67	0.33				1.6	1	2	
(Avg)									1	-	-				
Corre	lation Le	evel:		1:Slight	(Low)		2	:Modera	te (Medi	ium)		3:Subst	antial (H	ligh)	
b. c. d. e. f. g. h. i. j.	Building plan, ele Introduct Principle: Buildings Buildings R.C.C. fr Industrial Prefabric: Plumbing Rain wate Creation	Code. vation, vation, so of plan s of plan s with lo s with sl amed st l buildin ated Ind g and ele er harve	sectiona autoCAI aning, or bad beari oping ro ructures ags – No lustrial H ectric wo sting an	l view o D and its rientatio ing walls oof rth light Building orking di d septic	f supers tools n and co s roof str rawing f Tank	tructure omplete j uctures for reside	and sub joinery c ential bu	structure			-		uıldıng a		
TEXT B															
1.	Verma.	B.P., "C	ivil Eng	ineering	, Drawin	ng and H	ouse Pla	anning",	Khanna	Publishe	ers, 1989	•			
2.	Dr.N.K house p		•	Kames	waraRoa	a, "Builc	ling plaı	nning an	d drawir	ng" 9th R	evision,	Charotor	Publishi	ng	
REFERI	ENCES:														
1.	Sikka V	. B., A	Course i	in Civil	Enginee	ring Dra	wing, 4	th Editio	n, S.K.	Kataria a	nd Sons,	1998.			
	George Omura, "Mastering in AUTOCAD 2002", BPB Publications, 2002														
2.	George	Omura,	"Maste	ring in A	AUTOC.	AD 2002	2", BPB	Publicat	tions, 20	02					
2. 3.	Shah.M	.G., Kal	le. C.M.	and Pat		"Buildi					pproach	to Built E	Environm	ent",	

OURS	E CODE				CO	URSE I	NAME				L	Т	Р	С
U19	CE506			SOIL	MECH	ANICS	LABOI	RATOR	Y		0	0	2	1
Course	Objective	e (s): Th	e Purp	ose of le	arning	this cou	rse is to	:			ļ	1		
1.	Students	will abl	e to ider	ntify phy	sical an	d mecha	nical pro	operties	of soil i	n the field	d and lab	oratory s	ettings.	
2.	Preparing writing to	-	-		g, perfo	rming tl	he test,	collectin	ig and a	nalysing	data, int	erpreting	the result	lts and
3.	Student v				oratory t	est stand	lards and	l proced	ures bas	ed on IS	Codes.			
~	Q	() (00			0.74									
1	Outcome Determin									to:				
CO1										conducti	ng field a	nd labor	atory	
CO2	Apply the technical concepts and ways to solve engineering problems by conducting field and laboratory Experiments (K3)													
CO3	Determine the engineering properties and shear strength of soils.(K5)													
	edge Leve		Rememt	ber: K2	2 – Unde	erstand:	K3 – A	Apply:	K4 – A	nalyze:	K5 – Ev	aluate:		
CO – P	О Марріі	ng												_
COs	- DO1	Pos PSOs												
C01	PO1 2	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	POS
CO1 CO2		2 3 - - 3 - - - 1 3 2 3 - - 3 - - - - 1 3												
CO2	2	3 - - - - - 1 3 3 - - - - - - 1 3												
CO (Avg)	2	3	-	-	-	3	-	-	-	-	-	-	1	3
Corr	elation Lo	evel:		1:Slight	(Low)		2:	Modera	te (Med	ium)		3:Subst	antial (H	igh)
							DODD							
<u>I-С</u> а.	YCLE Specific			NATIO	N OF II	NDEX P	ROPEI	RTIES						
a. b.	Grain siz			Mechan	ical siev	e analys	is							
С.	Grain siz			Sedimen	tation (Hydrom	eter) ana	alysis						
d. e.	Atterberg Determin			vell										
II-C	CYCLE				N OF I	NSITU I	DENSIT	TY AND	COM	PACTIO	N CHAF	RACTER	ISTICS	
a.	In-situ de													
b.	Determin			re – dens NATIO						*	on test.			
a.	Permeab									,				
b.	One dime	ensional	consoli	dation te	est (Dete					solidation	n only)			
с. d.	Direct sh Unconfir					soil								
e.	Tri-axial													
f.	Standard													
g. h.														
TOTAL: 30 periods														
REFER	RENCES:													
1.	Soil me Salem.	chanics	laborate	ory man	ual – Pr	epared b	y Depa	rtment o	f Civil I	Engineeri	ng, Sona	College	of Techn	ology,
2.	Virtual	lab e- n	nanual, s	source II	IT-Hyde	erabad.								
3.	Soil mechanics laboratory manual, Braja .M. Das, Oxford university press, June-2019.													

COURS	E CODE COURSE NAME L T P C													
U190	CE907		A	RCHITI	ECTUR	E AND	TOWN	PLAN	NING		3	0	0	3
Course (Objective	e (s): Th	ne Purpo	ose of le	arning	this cou	rse is to	:				1		
1.			-		~	design a								
2.	Impart t	he basi	c knowle	edge in t	he Build	ling bye	-laws an	d site pl	anning.					
3.	Provide	the bas	ic know	ledge of	types o	f buildin	g and its	s design	principl	es.				
4.	Aware t	he stud	ents abo	utclimat	e and er	vironme	ental res	ponsive	design i	n the buil	ding.			
5.	Provide	Provide basic knowledge in the town planning and urban renewal for the buildings.												
Course (utcome (s) (COs): At the end of this course, the students will be able to:													
CO1	Recognize the basic elements and principles of architectural design. (K1)													
CO2	-		-	-	•	e analysi								
CO3	-	Identify the various rules and regulation of town planning and development authority (K3)												
CO4	-		-	ts of en	vironme	ent and	climate	in civil	enginee	ring proj	ects& ill	ustrate tl	ne princip	ples of
	landsca													
CO5			-		-	lanning a								
Knowled	0		Rememb	er: K2	– Unde	rstand: H	(3 - Ap)	ply: K	4 – Ana	lyze: K5	– Evalua	te:		
CO – PO) Mappir	ıg					<u></u>						DG	
COs	DO1	Pos PSOs PSOs												
CO1	PO1											POS		
CO1	-	-	-	-	-	-	2	1	1	1	-	-	-	-
CO2	2	-	1	2	-	-	-	-	-	-	1	1	1	1
CO3 CO4	-	2	1	2	-	3	- 2	-	-	- 2	-	-	-	1
C04 C05	-	-	-	-	-	-		1	3	2	1	1	1	1
C05 C0	-	-	-	-	-	3	-	1	3	2	-	1	-	-
(Avg)	0.4	0.4	0.4	0.8	-	1.2	0.8	0.6	1.4	1	0.4	0.6	0.4	0.6
	lation Le	vel:	Į	1:Slight	(Low)	ļ	2	:Modera	te (Med	ium)	Į	3:Subst	antial (H	igh)
UNIT-I		AR	CHITE	CTURA	L DES	[GN							(9 H	[rs)
Architect	ural desi	gn-Trir	nity of	Architec	ture-An	analysi	is- Integ	gration of	of funct	ion and	aestheti	cs-Introd	uction to	basic
elements	and princ	-			affectin	g Archit	ectural I	Design.					-	
UNIT-II			E PLAN										(9 H	
Surveys-			-		•		• •		velopme	ent contro	ol- Layou	ıt - Zonir	ıg - Obje	ctive –
Principle		_	-			esidentia	l buildir	ng.					(0.1	r \
UNIT-II			ILDING			· 1		· · · · 1	. 11. 1		Diana		(9 H	
Building institution									-	-				
services.	nai, com	mercial	and III	uustiial	- Appi	ication (or allull	opometi	iy allu	space sta	inuarus -	megrati		munig
UNIT-IV														
Man and											types-D	esign for		
	Passive and active energy control-Green building concept- Fundamental - Requirements. Landscape - planning - se - principle.													
UNIT-V	-	-	WN PL	ANNIN	G								(9 H	[rs)
Town pla	nning - o	objects	- princip	oles - ne	cessity ·	forms -	stages	- require	ement o	f new tov	vns. Surv	vey - coll	ection of	data -
types of s	survey - 1	nethods	s adopte	d to coll	ect data	- Applie	cation of	f IOT in	collecti	ng data-V	Urban rei	newal - o	bjects - I	Defects
of Existir	ng Town.	Aspect	s of urba	an renew	al proje	cts.								
												TO	TAL: 45	TT

TEXT B	OOKS:
1.	MuthuShoba Mohan G, "Principles of Architecture" Oxford University Press, New Delhi, 2010
2.	VRA. Saathappan and K. Yogeshwari, Principles of Architecture, Raamalingaa Publication, 2005
REFER	ENCES:
1.	Rangwala S.C, "Town Planning" Charotar Publishing House, Anand, 2016
2.	Francis D.K.Ching, "Architecture: Form, Space and Order", John Wiley & Sons, Inc. 2007.
3.	Arvind Krishnan, Nick Baker, SimosYannas, and Szokolay S.V, "Climate Responsive Architecture- A Design Hand Book for Energy Efficient Building". Tata McGraw Hill Publishing Company Ltd. New Delhi. 2007.
4.	National Building Code of India, SP7 (Group 1) Bureau of Indian Standards, New Delhi, 2005
5.	A.F.C. Sherratt, "Air-conditioning and Energy Conservation", The Architectural Press, London, 2007.

U10	E CODE	E						L	Т	Р	С			
0190	CE908]	BUILDI	NG SEI	RVICES	S AND S	SAFET	Y REGU	U LATI (ONS	3	0	0	3
Course (Objective	e (s): Tł	ne Purp	ose of le	arning	this cou	rse is to	:						l
1.	Provide	knowle	edge on	the build	ling elec	trificatio	on syste	ms.						
2.	Impart	the basi	c knowl	edge in t	he desig	n of ligl	nting sys	stems in	the buil	dings.				
3.	Provide	the bas	ic know	ledge of	providi	ng air co	ondition	ing syste	ems in th	e various	s types of	building	gs.	
4.										s in the b				
5.	Provide	basic k	nowledg	ge in the	water s	upply ar	d sewer	age syst	ems for	the build	ings.			
Course (Outcome	(s) (CC)s): At t	he end	of this c	ourse, t	he stude	ents will	be able	to:	-			
CO1	Acquire	e the bas	sics kno	wledge i	n electri	cal and	wiring s	ystems f	for the b	uildings.	(K1)			
CO2	Design	the ligh	ting sys	tem for t	he vario	us build	ings and	l disable	d people	es. (K3)				
CO3	Know t	he basic	provisi	ons for a	air condi	tioning	systems	for vario	ous type	s of build	lings. (K	4)		
CO4	Plan to	install t	he fire s	afety eq	uipment	system	in the bu	uildings	by obey	ing the re	gulation	s. (K3)		
CO5	Explain	Explain the various plumbing fittings in the water supply and rainwater harvesting system for buildings. (K2)												
Knowled	lge Leve	l: K1 – 1	Rememl	ber: K	2 - Under	erstand:	K3 – 4	Apply:	K4 – A	nalyze:	K5 – Ev	aluate:		
) Mappi													
<u> </u>]	Pos						PS	Os
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	POS
CO1	3	1	3	1	1	1	3	1	1	-	-	2	1	2
CO2	3										1	2		
CO3	3 2 3 1 2 1 3 - 1 - 2							2	1	2				
CO4	1	2	3	2	2	2	3	3	2	-	-	2	2	2
CO5	1	3	3	2	2	2	3	1	2	-	-	2	2	2
СО	2.2	2	3	1.4	1.8	1.4	3	1	1.4	_	_	2	1.4	2
(Avg)														
~	Correlation Level:1:Slight (Low)2:Moderate (Medium)3:Substantial (High)													
Corre	iution 1	evel.			· /									
								ng	×					
UN	IT-I	ELH	ECTRIC	CAL SY	STEMS		ILDIN(×	installati	ana Fart		9 Ho	ours
UN Basics of	IT-I f electrici	ELI	E CTRIC ile / Thre	CAL SY ee-phase	STEMS supply-	· Protect	ILDIN(ive devi	ces in el	lectrical			hing for	9 H osafety- T	ours ypes of
UN Basics of earthing-	IT-I f electrici ISI spec	ELI ty- Sing ificatior	ECTRIC le / Throns- Type	CAL SY ee-phase es of wir	STEMS supply- es, wirir	· Protect	ILDINC ive devi ns, and	ces in el their cho	lectrical			hing for	9 H osafety- T	ours ypes of
UN Basics of earthing- and distri	IT-I f electrici ISI spec ibution b	ELI ty- Sing ification oards- T	ECTRIC le / Thro ns- Type Transform	CAL SY ee-phase es of wir mers and	STEMS supply- es, wirir l switch-	· Protect ng syster ·gears- L	ILDIN(ive devi ns, and ayout o	ces in el their cho f substat	lectrical			hing for	9 Ho safety- T	ours ypes of - Mair
UN Basics of earthing- and distri UN	IT-I f electrici ISI spec ibution be	ELF ty- Sing ificatior oards- T PRI	ECTRIC le / Thro ns- Type Transfort NCIPL	CAL SY ee-phase es of wir mers and ES OF 1	STEMS supply- es, wirir l switch- ILLUM	· Protect ng systen ·gears- I INATIO	ILDIN(ive devi ns, and ayout o	ces in el their cho f substat ESIGN	lectrical pice- Pla tions.	anning ele	ectrical w	hing for a	9 Ho safety- Ty building 9 Ho	ours ypes of - Main
UN Basics of earthing- and distri UN	IT-I f electrici ISI spec ibution be IT-II ISKS- Fact	ELH ty- Sing ificatior oards- T PRI cors affe	ECTRIC le / Thro ns- Type Transform NCIPL cting vis	CAL SY ee-phase es of wir mers and ES OF l sual task	STEMS supply- es, wirir switch- ILLUM	Protecting system gears- I INATI(ern theor	ILDIN(ive devi ns, and ayout o DN & D ry of lig	ces in el their cho f substat ESIGN ht and co	ectrical pice- Pla tions. olour- S	unning ele	of light-	hing for a viring for	9 Ho safety- T building 9 Ho and subt	ours ypes of - Mair ours ractive
UN Basics of earthing- and distri UN Visual ta	IT-I f electrici ISI spec ibution be IT-II ssks- Fact	ELF ty- Sing ification oards- T PRI cors affe ur- Lun	ECTRIC le / Thro ns- Type Transform NCIPL cting visioning f	CAL SY ee-phase es of wir mers and ES OF I sual task flux- Ca	STEMS supply- es, wirir l switch- ILLUM s- Mode ndela- S	Protect ng systen gears- I INATIC ern theor Solid an	ILDIN(ive devi ns, and ayout o DN & D ry of lig gle illur	ces in el their cho f substat ESIGN ht and co nination	lectrical bice- Pla tions. olour- S a- Utilisa	ynthesis	of light- tor- Dept	hing for viring for Additive reciation	9 Ho safety- Ty building 9 Ho and subt factor- 1	ours ypes of - Mair ours ractive MSCP
UN Basics of earthing- and distri UNI Visual ta synthesis	IT-I f electrici ISI spec ibution b IT-II sks- Fact of colo Lans of	ELH ty- Sing ification oards- T PRI ors affe ur- Lun illumina	ECTRIC (le / Thro ns- Type Transform NCIPL cting via ninous f ation- C	CAL SY ee-phase es of wir mers and ES OF 1 sual task flux- Ca lassifica	STEMS e supply- es, wirir l switch- ILLUM cs- Mode ndela- S tion of	Protect ng systen gears- L INATIC ern theor Solid an lighting-	ILDIN(ive devi ns, and ayout o DN & D ry of lig gle illur Artific	ces in el their cho f substat ESIGN ht and co nination ial light	lectrical Dice- Pla tions. olour- S I- Utilisa sources	ynthesis ation fact	of light- tor- Depr	hing for viring for Additive reciation	9 Ho safety- T building 9 Ho and subt factor- 1 tion- Lui	ours ypes of - Mair ours ractive MSCP- minous
UN Basics of earthing- and distri UNI Visual ta synthesis MHCP- efficiency hospitals	IT-I f electrici ibution be IT-II ssks- Fact of colo Lans of y- Colou , and hou	ELH ty- Sing ificatior oards- T PRI ors affe ur- Lun illumina ur temp use light	ECTRIC le / Thro is- Type Transform NCIPL cting via ninous f ninous f nition- C erature- ing. Ele	CAL SY ee-phase es of wir mers and ES OF 1 sual task flux- Ca lassifica Colour ementary	STEMS supply- es, wirir l switch- ILLUM as- Mode ndela- S tion of renderir y idea of	Protect ng systen gears- I INATIC ern theor Solid an lighting- ing. Des special	ILDIN(ive devi ns, and ayout o DN & D DN & D gle illur Artific sign of	ces in el their cho f substat ESIGN ht and co nination ial light modern	lectrical pice- Pla tions. olour- S a- Utilisa sources a lightin	ynthesis ation fact s- Spectra g- Light	of light- tor- Depr al energy ing for	hing for viring for Additive reciation distribu stores, c	9 Ho safety- Ty building 9 Ho and subt factor- 1 tion- Lun offices, so	ypes of - Mair ours ractive MSCP- minous chools
UN Basics of earthing- and distri UNI Visual ta synthesis MHCP- efficiency hospitals physicall	IT-I f electrici ibution b IT-II isks- Fact s of colo Lans of y- Colou , and hou y handica	ELH ty- Sing ification oards- T PRI ors affe ur- Lun illumina ur temp use light apped a	ECTRIC the / Thro is- Type iransform NCIPL cting via ninous f ation- C erature- ting. Ele nd elder	CAL SY ee-phase es of wir mers and ES OF 1 sual task flux- Ca lassifica Colour ementary ly in bui	STEMS e supply- es, wirir l switch- ILLUM s- Mode ndela- S tion of renderir i dea of lding typ	Protect ng system gears- I INATIC ern theor Solid an lighting- ing. Des special pes.	ILDIN(ive devi ns, and ayout o)N & D ry of lig gle illur Artific sign of features	ces in el their cho f substat ESIGN ht and co mination ial light modern s require	lectrical pice- Pla tions. olour- S - Utilisa sources a lightin ed and m	ynthesis ation fact s- Spectra g- Light	of light- tor- Depr al energy ing for	hing for viring for Additive reciation distribu stores, c	9 Ho safety- Ty building 9 Ho and subt factor- 1 tion- Lun offices, so ion requi	ours ypes of - Main ours ractive MSCP- minous chools, red for
UN Basics of earthing- and distri UNI Visual ta synthesis MHCP- efficiency hospitals physicall UNI	IT-I f electrici iSI spec ibution be IT-II sks- Fact of colo Lans of y- Colou , and hou y handica T-III	ELH ty- Sing ificatior oards- T PRI ors affe ur- Lun illumina ir temp use light apped an REI	ECTRIC le / Thro ns- Type Transform NCIPL cting via ninous f ation- C erature- ting. Ele nd elder FRIGEI	CAL SY ee-phase es of wir mers and ES OF 1 sual task flux- Ca lassifica Colour ementary ly in bui RATION	STEMS supply- es, wirir l switch- ILLUM cs- Mode ndela- S tion of renderir ridea of lding typ	Protect ag system gears- I INATIC ern theor Solid an lighting- ing. Des special pes. CIPLES	ILDINC ive devi ns, and ayout o DN & D ry of lig gle illur Artific sign of features S & API	ces in el their cho f substat ESIGN ht and co mination ial light modern s require	lectrical pice- Pla tions. olour- S - Utilisa sources a lightin ed and m	ynthesis ation fact s- Spectra g- Light ninimum	of light- tor- Depr al energy ing for level of i	hing for viring for Additive reciation distribu stores, c illuminat	9 Ho safety- Ty building 9 Ho and subt factor- 1 tion- Lun offices, so ion requi 9 Ho	ypes of - Main ours ractive MSCP- minous chools, red for
UN Basics of earthing- and distri UNI Visual ta synthesis MHCP- efficiency hospitals physicall UNI Thermod	IT-I f electrici iSI spec ibution be IT-II ssks- Fact s of colo Lans of y- Colou , and hou y handica T-III lynamics	ELH ty- Sing ification oards- T PRI ors affe ur- Lun illumina ur temp use light apped an REI - Heat-	ECTRIC le / Thro is- Type Transform NCIPL cting via ninous f ation- C erature- ing. Ele nd elder FRIGEI Tempe	CAL SY ee-phase es of wir mers and ES OF 1 sual task flux- Ca lassifica Colour ementary ly in bui RATION rature, 1	STEMS supply- es, wirir l switch- ILLUM as- Mode ndela- S tion of renderir v idea of lding typ N PRIN measure	Protect ng system gears- I INATIC ern theor Solid an lighting- ing. Des special pes. CIPLES ment tra	ILDIN(ive devi ns, and ayout o DN & D Ty of lig gle illun Artific sign of features S & API ansfer-	ces in el their cho f substat ESIGN ht and co nination ial light modern s require PLICAT Change	ectrical pice- Pla tions. olour- S - Utilisa sources lightin ed and m	ynthesis ation fact s- Spectra g- Light hinimum e- Sensit	of light- tor- Dept al energy ing for level of i	hing for viring for Additive reciation distribu stores, c illuminat Latent	9 Ho safety- Ty building 9 Ho and subt factor- I ntion- Lun offices, so ion requi 9 Ho heat of	ypes of - Main - Main - Main - MSCP- minous chools, red for - purs fusion,
UN Basics of earthing- and distri UNI Visual ta synthesis MHCP- efficienc; hospitals physicall UNI Thermod evaporati	IT-I f electrici iSI spec ibution be IT-II isks- Fact s of colo Lans of y- Colou , and hou y handica T-III lynamics- ion, subli	ELI ty- Sing ification oards- T PRI ors affe ur- Lun illumina tr temp use light apped at REI - Heat- mation-	ECTRIC the / Thro is- Type iransform NCIPL cting via ninous f ation- C erature- ing. Ele nd elder Tempe saturati	CAL SY ee-phase es of wir mers and ES OF 1 sual task flux- Ca lassifica Colour ementary ly in bui RATION rature, r ion temp	STEMS e supply- es, wirir l switch- ILLUM as- Mode ndela- S tion of renderir didea of lding typ N PRIN measure perature-	Protect ng system gears- I INATIC ern theor Solid an lighting- ing. Des Special pes. CIPLES ment tra- Superh	ILDIN(ive devi ns, and ayout o DN & D ry of lig gle illur Artific sign of features S & API ansfer- eated va	ces in el their cho f substat ESIGN ht and co mination ial light modern s require PLICAT Change pour- Sp	lectrical pice- Pla tions. olour- S - Utilisa sources lightin ed and m FIONS of state ubcooled	ynthesis ation fact s- Spectra g- Light ninimum e- Sensit d liquid-	of light- tor- Dep al energy ing for level of i	hing for /iring for /distribu stores, c illuminat Latent temperat	9 Ho safety- Ty safety- Ty building 9 Ho and subt factor- 1 tion- Lun offices, so ion requi 9 Ho heat of ture relati	ours ypes of - Mair ours rractive MSCP- minous chools, red for ours fusion
UN Basics of earthing- and distri UNI Visual ta synthesis MHCP- efficiency hospitals physicall UNI Thermod evaporati for liqui	IT-I f electrici iSI spec ibution be T-II sks- Fact of colo Lans of y- Colou , and hou y handica T-III lynamics- ion, subli ds- Refri	ELH ty- Sing ificatior oards- T PRI ors affe ur- Lun illumina tr temp use light apped an REI - Heat- mation- igerants	ECTRIC le / Thro is- Type iransform NCIPL cting via ninous f ation- C erature- ing. Ele nd elder FRIGEI Tempe saturati - Vapou	CAL SY ee-phase es of wir mers and ES OF 1 sual task flux- Ca lassifica Colour ementary ly in bui RATION rature, 1 ion temp ir comp	STEMS e supply- es, wirir l switch- ILLUM is- Mode ndela- S tion of renderir v idea of lding typ N PRING measure- ression	Protect ag system gears- I INATIC ern theor Solid an lighting- ing. Des special bes. CIPLES ment tra Superh cycle- C	ILDINC ive devi ns, and ayout o DN & D ry of lig gle illur Artific sign of features S & API ansfer- eated va Compres	ces in el their cho f substat ESIGN ht and con nination ial light modern s require PLICAT Change ssors- E	lectrical pice- Plations. olour- S - Utilisa sources lightin ed and m FIONS of state ubcooled vaporate	ynthesis ation fact s- Spectra g- Light ninimum e- Sensit d liquid- prs- Refr	of light- tor- Depr al energy ing for level of i ple heat- Pressure igerant c	hing for viring for Additive reciation distribu stores, c illuminat Latent temperat	9 Ho safety- Ty building 9 Ho and subt factor- 1 tion- Lun offices, so ion requi 9 Ho heat of ture relati evices- E	ours ypes or - Mair ours rractive MSCP minous chools red for ours fusion jours
UN Basics of earthing- and distri UNI Visual ta synthesis MHCP- efficiency hospitals physicall UNI Thermod evaporati for liquid motors- S	IT-I f electrici iSI spec ibution be TT-II sks- Fact of colo Lans of y- Colou , and hou y handica T-III lynamics- ion, subli ds- Refri Starters-	ELI ty- Sing ification oards- T PRI ors affe ur- Lun illumina ur temp use light apped an REI - Heat- mation- gerants- Air han	ECTRIC le / Thro is- Type Transform NCIPL cting via- ninous f ation- C erature- ing. Ele nd elder FRIGEI Tempe saturati - Vapou dling un	CAL SY ee-phase es of wir mers and ES OF 1 sual task flux- Ca lassifica Colour ementary ly in bui RATION rature, 1 ion temp ir comp its- Coo	STEMS supply- es, wirir l switch- ILLUM cs- Mode ndela- S tion of renderir v idea of lding typ N PRIN measure perature- ression ling tow	Protect ng system gears- I INATIC ern theor Solid an lighting- ing. Des special pes. CIPLES ment tra Superh cycle- C ers- Win	ILDINC ive devi ns, and ayout o DN & D ry of lig gle illun Artific sign of features S & API ansfer- eated va Compresendow typ	ces in el their cho f substat ESIGN ht and con nination ial light modern s require PLICAT Change sors- E pe and p	ectrical pice- Pla tions. olour- S - Utilisa sources lightin ed and m TIONS of state ubcooled vaporate ackaged	ynthesis ation fact s- Spectra g- Light ninimum e- Sensit d liquid- ors- Refr air-cond	of light- tor- Dept al energy ing for level of i ole heat- Pressure igerant c itioners-	hing for viring for Additive reciation distribu stores, c illuminat Latent temperat control d Chilled	9 Ho safety- Ty building 9 Ho and subt factor- 1 tion- Lun offices, so ion requi 9 Ho heat of ture relati evices- F water plan	ypes of - Mair ours ractive MSCP- minous chools, red for ours fusion ionship Electric nt- Far
UN Basics of earthing- and distri UNI Visual ta synthesis MHCP- efficienc; hospitals physicall UNI Thermod evaporati for liquid motors- S coil syste	IT-I f electrici iSI spec ibution be IT-II ssks- Fact s of colo Lans of y- Colou y handica T-III lynamics- ion, subli ds- Refri Starters- ems- Wat	ELI ty- Sing ification oards- T PRI ors affe ur- Lun illumina ir temp use light apped an REI - Heat- mation- gerants Air hand er pipin	ECTRIC le / Thro is- Type Transform NCIPL cting via ninous f ation- C erature- ting. Ele nd elder Tempe saturati - Vapou dling un ag- Cool	CAL SY ee-phase es of wir mers and ES OF 1 sual task flux- Ca lassifica Colour ementary ly in bui RATION rature, 1 ion temp ir comp its- Coo	STEMS supply- es, wirir l switch- ILLUM cs- Mode ndela- S tion of renderir v idea of lding typ N PRIN measure perature- ression ling tow	Protect ng system gears- I INATIC ern theor Solid an lighting- ing. Des special pes. CIPLES ment tra Superh cycle- C ers- Win	ILDINC ive devi ns, and ayout o DN & D ry of lig gle illun Artific sign of features S & API ansfer- eated va Compresendow typ	ces in el their cho f substat ESIGN ht and con nination ial light modern s require PLICAT Change sors- E pe and p	ectrical pice- Pla tions. olour- S - Utilisa sources lightin ed and m TIONS of state ubcooled vaporate ackaged	ynthesis ation fact s- Spectra g- Light ninimum e- Sensit d liquid- ors- Refr air-cond	of light- tor- Dept al energy ing for level of i ole heat- Pressure igerant c itioners-	hing for viring for Additive reciation distribu stores, c illuminat Latent temperat control d Chilled	9 Ho safety- Ty building 9 Ho and subt factor- 1 tion- Lun offices, so ion requi 9 Ho heat of ture relati evices- F water plan	ypes of - Mair ours ractive MSCP- minous chools, red for ours fusion ionship Electric nt- Far
UN Basics of earthing- and distri UNI Visual ta synthesis MHCP- efficience hospitals physicall UNI Thermod evaporati for liquid motors- S coil syste to be cau	IT-I f electrici iSI spec ibution b IT-II isks- Fact s of colo Lans of y- Colou , and hou y handica T-III lynamics- ion, subli ds- Refri Starters- ems- Wat ised by A	ELF ty- Sing ification oards- T PRI ors affe ur- Lun illumina ir temp ise light apped an REI - Heat- mation- igerants Air hand cer pipin .C. Syst	ECTRIC the / Thro ins- Type iransform NCIPL cting via ninous f ation- C erature- ting. Ele nd elder FRIGEI Tempe saturati - Vapou dling un ng- Cool ems	CAL SY ee-phase es of wir mers and ES OF 1 sual task flux- Ca lassifica Colour ementary ly in bui RATION rature, 1 ion temp ir comp its- Coo ling load	STEMS e supply- es, wirir l switch- ILLUM is- Mode ndela- S tion of renderir diding typ N PRING measure ression ling tow - Air co	Protect In System gears- L INATIC ern theory Solid an lighting- ing. Des special pes. CIPLES ment tra- Superh cycle- C ers- Win nditioni	ILDIN(ive devi ns, and ayout o)N & D ry of lig gle illur Artific sign of features S & API ansfer- eated va Compresendow typ ng syste	ces in el their cho f substat ESIGN ht and con nination ial light modern s require PLICAT Change soors- E pe and p ms for c	lectrical pice- Pla tions. olour- S - Utilisa sources lightin ed and m FIONS of state ubcooled vaporate ackaged lifferent	ynthesis ation fact s- Spectra g- Light ninimum e- Sensit d liquid- prs- Refr air-cond types of	of light- tor- Dept al energy ing for level of i ole heat- Pressure igerant c itioners-	hing for viring for Additive reciation distribu stores, c illuminat Latent temperat control d Chilled	9 Ho safety- Ty building 9 Ho and subt factor- I tion- Lun offices, so ion requi 9 Ho heat of ture relati evices- F water plan	ours ypes of - Main ours rractive MSCP- minous chools, red for ours fusion, ionship Electric nt- Far nst fire
UN Basics of earthing- and distri UNI Visual ta synthesis MHCP- efficiency hospitals physicall UNI Thermod evaporati for liqui motors- S coil syste to be cau	IT-I f electrici iSI spec ibution be T-II sks- Fact of colo Lans of y- Colou , and hou y handica T-III lynamics- ion, subli ds- Refri Starters- ems- Wat sed by A T-IV	ELI ty- Sing ification oards- T PRI ors affe ur- Lun illumina ur temp use light apped an REI - Heat- mation- gerants- Air hand rer pipin .C. Syst FIR	ECTRIC le / Thro is- Type Transform NCIPL cting via- ninous f ation- C erature ing. Ele- nd elder FRIGEI Tempe saturati - Vapou dling un ag- Cool ems E SAFI	CAL SY ee-phase es of wir mers and ES OF 1 sual task flux- Ca lassifica Colour ementary ly in bui RATION rature, 1 ion temp ir comp its- Coo ling load	STEMS e supply- es, wirir l switch- ILLUM as- Mode ndela- S tion of renderir v idea of lding typ N PRIN measure perature- ression ling tow - Air co	Protect ng system gears- I INATIC ern theor Solid an lighting- ing. Des special pes. CIPLES ment tra Superh cycle- C ers- Win nditioni	ILDINC ive devi ns, and ayout o DN & D ry of lig gle illun Artific sign of features S & API ansfer- eated va Compresendow typ ng syste AND IN	ces in el their cho f substat ESIGN ht and con ial light modern s require PLICAT Change pour- Sp ssors- E pe and p ms for con	lectrical pice- Pla tions. olour- S - Utilisa sources le lightin ed and m TIONS of state ubcooled vaporate ackaged lifferent	ynthesis ation fact s- Spectra g- Light hinimum e- Sensit d liquid- ors- Refr air-cond types of	of light- tor- Dept al energy ing for level of i ple heat- Pressure igerant c itioners- building	hing for a viring for Additive reciation distribu stores, c illuminat Latent temperat control d Chilled s- Protec	9 Ho safety- Ty safety- Ty safety- Ty safety- Ty 9 Ho and subt factor- I factor- I fices, so ion requi 9 Ho heat of ture relati evices- F water plan stion again	ypes of - Mair ours rractive MSCP- minous chools, red for ours fusion ionship Electric nt- Far nst fire
UN Basics of earthing- and distri UNI Visual ta synthesis MHCP- efficienc; hospitals physicall UNI Thermod evaporati for liquie motors- S coil syste to be cau UNI Causes o	IT-I f electrici iSI spec ibution be IT-II ssks- Fact s of colo Lans of y- Colou y handica T-III lynamics- ion, subli ds- Refri Starters- ems- Wat sed by A T-IV of fire in	ELI ty- Sing ification oards- T PRI ors affe ur- Lun illumina ur temp use light apped an REI - Heat- mation- igerants- Air hand cer pipin .C. Syst building	ECTRIC le / Thro is- Type Transform NCIPL cting via ninous f ation- C erature- ting. Ele nd elder Tempe saturati - Vapou dling un ag- Cool ems E SAFI ss- Safet	CAL SY ee-phase es of wir mers and ES OF 1 sual task flux- Ca lassifica Colour ementary ly in bui RATION rature, n ion temp its- Coo ling load ETY RE	STEMS e supply- es, wirir l switch- ILLUM as- Mode ndela- S tion of renderir ridea of lding typ N PRIN measure perature- ression ling tow - Air co GULAT	Protect ng system gears- I INATIC ern theor Solid an lighting- ing. Des special pes. CIPLES ment tra- Superh cycle- C ers- Win nditioni IBC- Pla	ILDINC ive devi ns, and ayout o DN & D ry of lig gle illun Artific sign of features S & API ansfer- eated va Compresendow type ng syste AND IN	ces in el their cho f substat ESIGN ht and con nination ial light modern s require PLICAT Change pour- S ssors- E pe and p ms for con STALL onsidera	lectrical pice- Pla tions. olour- S - Utilisa sources lightin ed and m FIONS of state ubcooled vaporate ackaged lifferent ATION	ynthesis ation fact s- Spectra g- Light hinimum e- Sensit d liquid- ors- Refr air-cond types of U	of light- tor- Depr al energy ing for level of i ple heat- Pressure igerant c itioners- building s like no	hing for /iring for Additive reciation / distribu stores, c illuminat Latent temperate control d Chilled v s- Protecc n-combu	9 Ho safety- Ty safety- Ty subilding 9 Ho and subt factor- I tion- Lun offices, so ion requi 9 Ho heat of ture relati evices- F water plan stible ma	ours ypes o - Main ours rractive MSCP minous chools red for ours fusion fusion ionship Electric nt- Far nst fire ours tterials
UN Basics of earthing- and distri UNI Visual ta synthesis MHCP- efficiency hospitals physicall UNI Thermod evaporati for liquid motors- S coil syste to be cau UNI Causes o construct	IT-I f electrici ISI spec ibution be IT-II isks- Fact s of colo Lans of y- Colou y handica y handica T-III lynamics- ion, subli ds- Refri Starters- ems- Wat sed by A T-IV of fire in 1 tion, stair	ELI ty- Sing ification pards- T PRI ors affe ur- Lun illumina ir temp ise light apped an REI • Heat- mation- gerants- Air hand cer pipin .C. Syst building cases ar	ECTRIC the / Thro is - Type Transform NCIPL cting via ninous f ation - C erature- ing. Ele nd elder Tempe saturati - Vapou dling un ng- Cool ems E SAFI as - Safet nd lift lo	CAL SY ee-phase es of wir mers and ES OF 1 sual task flux- Ca lassifica Colour ementary ly in bui RATION rature, 1 ion temp its- Cooling load ETY RE	STEMS e supply- es, wirir l switch- ILLUM as- Mode ndela- S tion of renderir diding typ N PRING measure perature- ression ling tow - Air co GULAT tions- N re escap	Protect ng system gears- L INATIC ern theor Solid an lighting- ing. Des special bes. CIPLES ment tra Superh cycle- C ers- Win nditioni IBC- Pla es, and L	ILDINC ive devi ns, and ayout o DN & D ry of lig gle illur Artific sign of features S & API ansfer- eated va Compres ndow typ ng syste AND IN anning c A.C. sys	ces in el their cho f substat ESIGN ht and con ial light modern s require PLICAT Change pour- Se ssors- E pe and p ms for considera tems. Sp	lectrical pice- Pla tions. olour- S - Utilisa sources a lightin ed and m TIONS of state ubcooled vaporate ackaged lifferent LATION	ynthesis ation fact s- Spectra g- Light hinimum e- Sensit d liquid- ors- Refr air-cond types of N building atures rec	of light- tor- Depr al energy ing for level of i oble heat- Pressure igerant c itioners- building s like no quired for	hing for viring for Additive reciation distribu stores, c illuminat Latent temperat control d Chilled s- Protec n-combu	9 Ho safety- Ty safety- Ty safety- Ty safety- Ty 9 Ho and subt factor- I factor- I fices, so ion requi 9 Ho heat of ture relati evices- F water plan stion again	ours ypes o - Main ours rractive MSCP minous chools red for ours fusion fusion fusion ionship Electric nt- Far nst fire ours tterials capped

UN	T-V WATER SUPPLY AND SEWERAGE SYSTEM FOR BUILDINGS	9 Hours
Plumbing	g fixtures and fixture fittings- Water-conserving fittings- Overflows- Strainers and connectors	- Prohibited fixtures-
Special f	ixtures- Installation of water closet- Urinals - Flushing devices- Floor drains- Shower st	all- Bathtub- Bidets-
Minimun	n plumbing facilities- Rainwater harvesting systems- Necessity- Construction- Different types	
		TOTAL: 45 Hours
TEXT B	OOKS:	
1.	R. Udaykumar, "A text book on Building Services", Eswar Press, Chennai, ISBN13, 978817	8740638. ISBN-10,
1.	_817874063X	
2.	David V. Chadderton, Building Services Engineering Taylor & Francis, 2000.	
REFER	ENCES:	
1.	Handbook for Building Engineers in Metric systems, NBC, New Delhi, 2011.	
2.	Philips Lighting in Architectural Design, McGraw-Hill, New York, Latest edition.	
3.	R.G.Hopkinson and J.D.Kay, "The Lighting of buildings", Faber and Faber, London, 1972.	
4.	William H.Severns and Julian R.Fellows, "Air-conditioning and Refrigeration", John Wiley a 1988.	and Sons, London,
5.	A.F.C. Sherratt, "Air-conditioning and Energy Conservation", The Architectural Press, Lond	on, 2007.

COURS	E CODE	E			CO	URSE	NAME				L	Т	Р	С
noc21	l-ce71		INTRO	DUCTI	ON TO	ENGIN	EERIN	G SESI	MOLO	GY	3	0	0	3
Course (Objective	e (s): Th	ne Purp	ose of le	arning	this cou	rse is to	:			•	<u> </u>		1
1.	Know t	he origi	n of ear	thquakes										
2.	Underst	tand the	concept	t of earth	nquake n	neasurin	g instru	ments ar	nd record	ling				
3.	Learn t	he seisn	nic zona	tion and	hazard a	analysis								
4.	Study the	he seisn	nic site c	haracter	ization a	and its et	ffects							
5.	Analyz	e the sei	smic ha	zard par	ameters	and zon	ation ma	apping						
Course (Outcome	tcome (s) (COs): At the end of this course, the students will be able to:												
CO1	Familia	Familiarize the different types of hazards												
CO2	Apply modern seismic measuring instruments													
CO3	Understand the concept of seismic zonation													
CO4	-	Explain the seismic site characterization and its effects												
CO5	-	Acquire knowledge on the seismic hazard parameters and zonation mapping e Level: K1 – Remember: K2 – Understand: K3 – Apply: K4 – Analyze: K5 – Evaluate:												
	0		Remem	ber: K2	2 – Unde	erstand:	K3 – A	Apply:	K4 – A	nalyze:	K5 - Ev	aluate:		
CO - PO) Mappi	ng												
COs		1		1			Pos					I	PS	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	POS
CO1	-											-		
CO2	-	-	-	-	3	2	2	-	-	-	-	-	-	-
CO3		<u>- 2 - 1 2 1 2 1 1 2</u>										-		
CO4	-	2	-	2	$\frac{2}{2}$	1	1 2	1	1	-	-	-	-	-
CO5 CO	-	Z	-	1	Z	1	2	1	1	-	-	-	-	-
(Avg)	-	0.8	-	0.8	1.8	1	1.8	0.8	0.6	0.4	-	-	-	-
	lation Le	evel:	Į	1:Slight	(Low)	ļ	2	:Modera	te (Med	um)	1	3:Subst	antial (H	igh)
Week 3: Shadow z Week 4:	Theory zones	of Wav	ve Propa	agation	Seismic	wave p	oropagat	ion, Tyj	pes of s	eismic v	waves, W	nental Dri √ave cha earthqua	racteristi	
Compara Week 5:	-			Sensors	and Dat	ta Logge	ers, Mecl	hanical a	and Digi	tal senso	rs; Seism	ic Statio	1	
domain c Week 7:	Interpretation of Seismic Records: Identification of made events and natural earthquake; Time and frequency characteristic of ground motion													
and Meth Week 8:	Regional Seismicity, Earthquakes in India and Most important Global Earthquakes; Concept of Seismic Zonation thodology for Seismic microzonation													
Predictive Week 9:	Earthquake Catalog preparation, Source Map preparation; Homogenization and Declustering of earthquake data reparation of Seismotectonic maps													
Week 10 16.06.												Regula	tions-20	019

 Seismic Hazard Parameters: a and b values, Recurrence relations and Maximum magnitude: Region Specific

 Approach for estimation Parameters and Selection of predictive equations

 Week 11:

 Seismic Hazard Analysis: Deterministic and Probabilistic Methods; Rupture based approach

 Week 12:

 Seismic Hazard Analysis Case studies and Worked examples

 TOTAL: 45 Hours

 TEXT BOOKS:

 1.

 Earthquake Geotechnical Engineering, Steven L. Kramer

 1.

 Earthquake Hazard Analysis: Issues and Insights, Leon Reiter

Semester -V	U19GE501 : SOFT SKILLS AND APTITUDE - III L T P C Marks 0 0 2 1 100
Course Outcome	s course the student will be able to:
1. Demonstrate	capabilities in supplementary areas of soft-skills and job-related selection processes
using hands-o	n and/or case-study approaches
2. Solve problem	ns of advanced levels than those in SSA-II in specified areas of quantitative aptitude and
logical reason	ing and score 70-75% marks in company-specific internal tests
3. Demonstrate	greater than SSA-II level of verbal aptitude skills in English with regard to given topics
and score 70-2	75% marks in company-specific internal tests
LISOFT SKILLS	 Demonstrating soft-skill capabilities with reference to the following topics: a. Career planning: Importance; Exploring various career options, Field research, Social media management; Process, benefits and limitations of career planning; Mapping SWOT and GOALS to career planning; Self-evaluation b. Resume writing : Build credentials and resume, Positioning yourself and your

.QUANTITATI VE c. Probability: Addition & Multiplication Theorems, Conditional Probability and Bayes Theorem. APTITUDE AND d. Statistics : Mean Median, Mode, Range and Standard Deviation. LOGICAL REASONING e. Interest Calculation :Simple Interest and Compound Interest f. Crypto arithmetic: Addition and Multiplication based problem. g. Logical Reasoning :Blood Relations, Directions Test, Series, Odd man out, Analogy, Coding & Decoding, Problems and Input - Output Reasoning. h. Statement & Assumptions, Statements & Arguments, Inference. i. Company Specific Pattern :Infosys and TCS company specific problems Demonstrating English language skills with reference to the following topics: a. Subject verb agreement b. Selecting the best alternative for the stated parts of given sentences c. Reading comprehension d. Contextual synonyms e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions		Solving problems with reference to the following topics :
 b. Permutation & Combinations : Principles of counting, Circular Arrangements and Derangements. c. Probability: Addition & Multiplication Theorems, Conditional Probability and Bayes Theorem. d. Statistics : Mean Median, Mode, Range and Standard Deviation. a. Interest Calculation :Simple Interest and Compound Interest f. Crypto arithmetic: Addition and Multiplication based problem. g. Logical Reasoning :Blood Relations, Directions Test, Series, Odd man out, Analogy, Coding & Decoding, Problems and Input - Output Reasoning. h. Statement & Assumptions, Statements & Arguments, Inference. i. Company Specific Pattern :Infosys and TCS company specific problems Demonstrating English language skills with reference to the following topics: a. Subject verb agreement b. Selecting the best alternative for the stated parts of given sentences c. Reading comprehension d. Contextual synonyms e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions 		
and Derangements. approximately and bases of the second		
 2.QUANTITATI VE APITITUDE AND LOGICAL REASONING c. Probability: Addition & Multiplication Theorems, Conditional Probability and Bayes Theorem. d. Statistics : Mean Median, Mode, Range and Standard Deviation. e. Interest Calculation : Simple Interest and Compound Interest f. Crypto arithmetic: Addition and Multiplication based problem. g. Logical Reasoning :Blood Relations, Directions Test, Series, Odd man out, Analogy, Coding & Decoding, Problems and Input – Output Reasoning. h. Statement & Assumptions, Statements & Arguments, Inference. i. Company Specific Pattern :Infosys and TCS company specific problems Demonstrating English language skills with reference to the following topics: a. Subject verb agreement b. Selecting the best alternative for the stated parts of given sentences c. Reading comprehension d. Contextual synonyms e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions 		and Darangements
2.QUANTITATI VE APTITUDE AND d. Statistics : Mean Median, Mode, Range and Standard Deviation. e. Interest Calculation :Simple Interest and Compound Interest f. Crypto arithmetic: Addition and Multiplication based problem. g. Logical Reasoning :Blood Relations, Directions Test, Series, Odd man out, Analogy, Coding & Decoding, Problems and Input – Output Reasoning. h. Statement & Assumptions, Statements & Arguments, Inference. i. Company Specific Pattern :Infosys and TCS company specific problems Demonstrating English language skills with reference to the following topics: a. Subject verb agreement b. Selecting the best alternative for the stated parts of given sentences c. Reading comprehension d. Contextual synonyms e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions Der.S.Anita Head/Training Department of Placement Training Sona College of Technology, Salem-836 005.		
APTITUDE AND LOGICAL REASONING d. Statistics : Mean Median, Mode, Range and Standard Deviation. e. Interest Calculation :Simple Interest and Compound Interest f. Crypto arithmetic: Addition and Multiplication based problem. g. Logical Reasoning :Blood Relations, Directions Test, Series, Odd man out, Analogy, Coding & Decoding, Problems and Input - Output Reasoning. h. Statement & Assumptions, Statements & Arguments, Inference. i. Company Specific Pattern :Infosys and TCS company specific problems Demonstrating English language skills with reference to the following topics: a. Subject verb agreement b. Selecting the best alternative for the stated parts of given sentences c. Reading comprehension d. Contextual synonyms e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions		
AND LOGICAL REASONING c. Interest Calculation : Simple Interest and Compound Interest f. Crypto arithmetic: Addition and Multiplication based problem. g. Logical Reasoning :Blood Relations, Directions Test, Series, Odd man out, Analogy, Coding & Decoding, Problems and Input – Output Reasoning. h. Statement & Assumptions, Statements & Arguments, Inference. i. Company Specific Pattern :Infosys and TCS company specific problems Demonstrating English language skills with reference to the following topics: a. Subject verb agreement b. Selecting the best alternative for the stated parts of given sentences c. Reading comprehension d. Contextual synonyms e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions Department of Placement Training Sons College of Technology, Salem-836 005.		
REASONING f. Crypto arithmetic: Addition and Multiplication based problem. g. Logical Reasoning :Blood Relations, Directions Test, Series, Odd man out, Analogy, Coding & Decoding, Problems and Input – Output Reasoning. h. Statement & Assumptions, Statements & Arguments, Inference. i. Company Specific Pattern :Infosys and TCS company specific problems Demonstrating English language skills with reference to the following topics: a. Subject verb agreement b. Selecting the best alternative for the stated parts of given sentences c. Reading comprehension d. Contextual synonyms e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions		
g. Logical Reasoning :Blood Relations, Directions Test, Series, Odd man out, Analogy, Coding & Decoding, Problems and Input – Output Reasoning. h. Statement & Assumptions, Statements & Arguments, Inference. i. Company Specific Pattern :Infosys and TCS company specific problems Demonstrating English language skills with reference to the following topics: a. Subject verb agreement b. Selecting the best alternative for the stated parts of given sentences c. Reading comprehension d. Contextual synonyms e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions Dr.S.Anita Head/Training Department of Placement Training Sana College of Technology, Salem-636 005.		
Analogy, Coding & Decoding, Problems and Input – Output Reasoning. h. Statement & Assumptions, Statements & Arguments, Inference. i. Company Specific Pattern :Infosys and TCS company specific problems Demonstrating English language skills with reference to the following topics: a. Subject verb agreement b. Selecting the best alternative for the stated parts of given sentences c. Reading comprehension d. Contextual synonyms e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions Dr.S.Anita Head/Training Department of Placement Training Song College of Technology, Salem-636 005.		
h. Statement & Assumptions, Statements & Arguments, Inference. i. Company Specific Pattern :Infosys and TCS company specific problems Demonstrating English language skills with reference to the following topics: a. Subject verb agreement b. Selecting the best alternative for the stated parts of given sentences c. Reading comprehension d. Contextual synonyms e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions Dr.S.Anita Head/Training Department of Placement Training Sona College of Technology, Salem-636 005.		
i. Company Specific Pattern :Infosys and TCS company specific problems Demonstrating English language skills with reference to the following topics: a. Subject verb agreement b. Selecting the best alternative for the stated parts of given sentences c. Reading comprehension d. Contextual synonyms e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions Dr.S.Anita Head/Training Department of Placement Training Sona College of Technology, Salem-636 005.		
Demonstrating English language skills with reference to the following topics: a. Subject verb agreement b. Selecting the best alternative for the stated parts of given sentences c. Reading comprehension d. Contextual synonyms e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions		
a. Subject verb agreement b. Selecting the best alternative for the stated parts of given sentences c. Reading comprehension d. Contextual synonyms e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions Dr.S.Anita Head/Training Department of Placement Training Sona College of Technology, Salem-636 005.	renormor bar a	
 b. Selecting the best alternative for the stated parts of given sentences c. Reading comprehension d. Contextual synonyms e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions 		12 Conclusion Periodo ministrated and Social media cover
3. VERBAL APTITUDE C. Reading comprehension d. Contextual synonyms e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions Dr.S.Anita Head/Training Department of Placement Training Sons College of Technology, Salem-636 005.		The second second second to the second se
APTITUDE d. Contextual synonyms e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions Dr.S.Anita Head/Training Department of Placement Training Sona College of Technology, Salem-636 005.		FIGURE OF SECON FUE TO A COMPANY STATE TO ALL TO A SECOND STATE TO A SECOND STATE ST
e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions Dr.S.Anita Head/Training Department of Placement Training Sona College of Technology, Salem-636 005.		
f. Writing a story for a given picture g. Company specific aptitude questions	APTITUDE	d. Contextual synonyms
g. Company specific aptitude questions g. Company specific aptitude questions Dr.S.Anita Head/Training Department of Placement Training Sona College of Technology, Salem-636 005.		For the and ment to concluding on to manually a revealed a participation of the
Department of Placement Training Sons College of Technology, Salem-636 005.		e. Sentence fillers
Department of Placement Training Sona College of Technology, Salem-636 005.		e. Sentence fillersf. Writing a story for a given picture
Department of Placement Training Sona College of Technology, Salem-636 005.	internation of the second s	e. Sentence fillersf. Writing a story for a given picture
Dr.S.Anita Head/Training Department of Placement Training Sona College of Technology, Salem-636 005.	hei s tos pued	 e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions
Dr.S.Anita Head/Training Department of Placement Training Sona College of Technology, Salem-636 005.	hei s tos pued	 e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions
Dr.S.Anita Head/Training Department of Placement Training Sona College of Technology, Salem-636 005.	hei s tos pued	 e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions
Head/Training Department of Placement Training Sona College of Technology, Salem-636 005.	heal is the parent	 e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions
Sona College of Technology, Salem-636 005.	J. Jui	 e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions
Sona College of Technology, Salem-636 005.	J. Jui Dr.S.Ani	 e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions
Salem-636 005.	J. Jur Dr.S.Ani Head/Train	 e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions
	Dr.S.Ani Head/Train	 e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions
	Dr.S.Ani Head/Train	 e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions
	Dr.S.Ani Head/Train Department of Pla Sona College C Salem-6	 e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions
	Dr.S.Ani Head/Train Department of Pla Sona College C Salem-6	 e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions
	Dr.S.Ani Head/Train Department of Pla Sona College C Salem-6	 e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions
	Dr.S.Ani Head/Train Department of Pla Sona College C Salem-6	 e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions
	Dr.S.Ani Head/Train Department of Pla Sona College C Salem-6	 e. Sentence fillers f. Writing a story for a given picture g. Company specific aptitude questions

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E. / B.Tech. Semester VI Regulations 2019 Branch: Civil Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours
		Theory					
1	U19CE601	Water Resources and Irrigation Engineering	3	0	0	3	45
2	U19CE602	Structural Analysis-II	2	1	0	3	45
3	U19CE603	Foundation Engineering	3	0	0	3	45
4	U19CE604	Limit State Design of Steel Structures	3	1	0	4	60
5	U19CE916	Professional Elective - Repair and Rehabilitation of Structures	3	0	0	3	45
	U19CE917	Professional Elective - Prefabricated Structures					
6	U19CE920	Professional Elective - Traffic Engineering and Management	3	0	0	3	45
		Practical					
7	U19CE605	Civil Engineering Software Applications Laboratory	0	0	4	2	60
8	U19CE606	Innovative Projects	0	0	2	1	30
9	U19GE602	Professional Development Skills	0	0	2	1	30
				To	tal Credits	23	

Approved By

Chairperson,	Civil	Engineerin	ng BoS
--------------	-------	------------	--------

Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Dr.R.Malathy Copy to:-

HOD/Civil Engineering, Sixth Semester BE Civil Students and Staff, COE

COUR	SE CODI	E CODE COURSE NAME L T P C												
	CE601								IGINEE	RING	3	0	0	3
Course	Objectiv	. ,			U									
1			-			U		1	0			e water a		
2		-								-	-	ity impro	ving tech	niques.
3			-	-		-				n and wa				
4						•				-	-	ven land		
5			<u> </u>		-	-			-		nd Water	· Logging	problem	IS.
	Outcome (s) (COs): At the end of this course, the students will be able to:													
C01	Remember the basic concepts of rainfall occurrence and its data interpretation (K1)													
CO2		Understand the groundwater movement and method of measuring the yield (K2) Select suitable methods of irrigation for better crop management (K3)												
CO3 CO4							-	-			1.		1.D	
C04 C05			•	•						-		tructures		
	edge Leve	-										er loggin	g issues ((K4)
	O Mappi			<u>, , , , , , , , , , , , , , , , , , , </u>	2 - 0100	Astana.	<u>KJ – A</u>	pry. r	x + - / 110					
Cos						1	Pos						P	SOs
Cus	PO1													
CO1	3		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
CO2	3	1											2	
CO3	3	2	-	2	-	2	1	1	-	-	-	-	2	1
CO4	3	1	-	1	1	1	2	2	-	-	-	-	1	2
CO5	2	1	-	2	2	2	1	1	-	-	-	-	2	1
СО	2.8	1.4	_	1.6	1	1.6	1.4	1.2	_	_	_		1.6	1.4
(Avg)	relation I		_			1.0			rate (Me	- dium)	_	2.5h	stantial (1	
	NIT-I			E WAT	t (Low)			2.100ue	late (Me			5.Sub		lours
	ological Cy							tion cir	culation.	Tempera	ture-Hur	nidity-W		
	of precip													
	sis - Unit h		-											0 1
TIN	NIT-II	CD		WATEI			17						0.11	lours
	dwater og							roportic	s. Dorm	aability	specific	viold tr		
	e coefficie				-	• •		-		•	-	•		•
-	lls. Metho			-		-				-				
Potent	tial in Indi	a-GEC	norms. S	Saline w	ater intr	usion. R	ain wate	r harves	sting.	-			-	
TIN		ID	DICAT										0.11	[
	IT-III ion - need			ION PE			rrigation	Cron	and cron	seasons	Consur	ntive use		lours
-	base perio		-				-	-	-			-		•
	ds: Canal			•	• •				-	-				Burron
		-						-						
	IT-IV						NG STR							lours
	-Elementa													
	and sluic			s-Factor	s affecti	ng locat	ion and	type of	dams-Fo	orces on	a dam-Sp	oill ways-	Factors	affecting
locatio	on and typ	e of dan	ns.											
UN	NIT-V	IR	RIGAT	TON ST	RUCT	URES							9 H	lours
Canal	irrigation						als-Cana	al drops	: Types-	Cross di	ainage v	vorks- T	ypes -Ca	nal head
	- Canal re	-		-	-							-		
saline	land- Syst	tem layo	out of dr	ainage s	ystem-R	liver trai	ining wo	orks- Ca	nal losse	s- introdu	uction to	irrigation	manage	ment.
												T	ΟΤΑΤ・	45 Hours
												1	OTAL: 2	is nours

TEXT B	BOOKS:							
1.	Garg S.K, "Irrigation Engineering," Laxmi Publications, New Delhi, 2009.							
2.	Punmia B.C, "Irrigation and Water Power Engineering", Laxmi Publishers, New Delhi,2016.							
REFER	ENCES:							
1.	Arora K.R, "Irrigation, Water Power and Water Resources Engineering", Standard Publishers Distributors, New Delhi, 2010.							
2.	Subramanya, Engineering Hydrology, Tata-McGraw Hill,2013.							
3.	Ragunath H.M, "Hydrology", Willey Eastern Limited, New Delhi, 2008.							
4.	Asawa G.L, "Irrigation Engineering", New Age International Publishers, New Delhi,2009.							

COURS	SE CODE	E			CO	L	Т	Р	С					
U190	CE602			ST	RUCT	URAL A	ANALY	SIS II			2	1	0	3
	Objectiv		-		-									
1.		-		•				• •		ion meth				
2.			**							of indet	erminate	structure	s.	
3.	-				tures by			-						
4.		•				•			method	•				
5.	Compre	ehend th	e conce	pt of pla	stic anal	ysis of t	beams ai	nd rigid	frames.					
C01	Analyza	the eer	ntinuouo	haama	and rigid	framaa	by clon	a dafaati	ion moth	od (KA)				
	CO2 Understand the concept of moment distribution and analysis of continuous beams and rigid frames with and without													
02	sway. (K2)													
CO3	CO3 Illustrate knowledge of to analyse the continuous beams and pin jointed plane frames by matrix flexibility method.													
(K3)														
CO4 Apply matrix stiffness method to analyse the continuous beams and pin jointed plane frames. (K3)														
CO5 Recognize the concept of Plastic analysis and the method of analysing beams and rigid frames. (K2)														
Knowle	Knowledge Level: K1 – Remember: K2 – Understand: K3 – Apply: K4 – Analyze: K5 – Evaluate:													
CO – P	CO – PO Mapping													
COs	Os Pos PSOs													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	-	-	-	2	-	-	2	1	3	3
CO2	3	3	3	2	-	-	-	2	-	-	2	1	3	3
CO3	3	3	3	2	-	-	-	2	-	-	2	1	3	3
CO4	3	3	3	2	-	-	-	2	-	-	2	1	3	3
CO5	3	3	3	2	-	-	-	2	-	-	2	1	2	2
CO (Avg)	3	3	3	2	-	-	-	2	-	-	2	1	2.8	2.8
Cori	elation I	Level:	I	1:Sligh	nt (Low)	I		2:Mode	rate (Me	dium)	I	3:Sub	stantial (High)
UN	IT-I	SLC)PE DE	FLECT	TON M	ETHOI)						9 H	lours
-		-	-				•				-		Rigid fra	mes with
inclined	members	s - Supp	ort settle	ements-	symmet	ric fram	es with s	symmetr	ric and sl	kew-sym	metric loa	adings.		
	IT-II				IBUTIC									lours
	1				•								•	terminate
		s (with a	and with	iout swa	y): Defo	ormed sh	nape, she	ear force	e and bei	nding mo	ment dia	gram (un	knowns	restricted
to three	•													
	T-III				ATRIX									lours
														natrices -
•	of contin			-	•		•	ect flexit	511ity me	thod (rec	lundancy	restricted		•
	IT-IV				RIX MI			•	1	F 1		.:		lours
	-													nalysis of
	ous beams	-	-	-		y direct	sumes	s method		wiis resu		wo omy)		[
	IT-V		ASTIC A			ng Dla	stia moi	mont of	rosiston	Do Dias	tia modu	luc Sh		lours or – Load
	•	-											-	eorems -
	nalysis of						Static a			linous –	Opper ai	iu lower	bound th	corenis -
i morio u											ТС)TAL (3	0+15)• 44	5 Hours
ТЕХТ Н	BOOKS:											, I.I.I. (J		. 110015
1.	r	atti,S.S.	Matrix	Method	of Struc	tural An	alysis, I	.K.Inter	national	Publishir	ng House	Pvt.Ltd.,	NewDell	hi-4,
2.					lysis, Na						<u> </u>	;		

REFER	ENCES:
1.	Punmia B.C, "Theory of Structures", Standard Book House, New Delhi, 2000.
2.	Pandit G.S, and Gupta S. P, "Structural Analysis a Matrix Approach", Tata McGraw Hill Publications, New Delhi,
3.	Reddy .C.S , —Basic Structural Analysisl, Tata McGraw Hill Publishing Company, 2011
4.	Negi L.S. and Jangid R.S, "Structural Analysis", Tata McGraw Hill Publications, New Delhi, 2003.

COURSE CODE COURSE											L	Т	P	С
	CE603		D				NGINE				3	0	0	3
	Objectiv													
1.	Impart the knowledge of the subsurface investigation and bore log report interpretation understand various bearing capacity determination techniques													
2.				0 1				-						
3.	Evaluat		-				and Des	sign pri	nciples					
4.	To discu		-	-										
5.	Explica		-			-								
Course	Outcome													
CO1				-						ndition.(
CO2	Estimat	e the be	aring ca	pacity o	f soil ba	sed on s	hear and	l settlem	ent crite	eria. (K4)				
CO3	Analyze	e the pro	oportion	of vario	us shall	ow foun	dations.	(K4)						
CO4	Calculate the load carrying capacity of piles. (K5)													
CO5														
Knowle	dge Leve	l: K1 – I	Rememb	ber: K2	2 – Unde	erstand:	K3 – Ap	ply: K	4 – Ana	alyze: K5	– Evalua	ite:		
	O Mappi									-				
	Pos PSOs													
	PO1	PO2	PO3	PO11	PO12	PSO1	PSO2							
CO1	3	2	3	PO4 3	PO5 3	PO6	PO7	PO8	PO9	PO10 3	3	3	3	3
CO2	3	3	3	2	2	2	1	3	1	-	-	2	3	2
CO3	3	3	3	2	2	2	1	3	1	-	_	2	3	2
CO4	3	3	3	2	2	2	1	3	1	_		2	3	2
C04	3	3	3	2	2	2	1	3	1	_	_	2	3	2
<u>CO</u>	3	2.8	3	2.2	2.2	2	1	3	1.4	0.6	0.6	2.8	3	2.2
	3	2.0	3	2.2	2.2	2	1	3	1.4	0.0	0.0	2.0	3	2.2
(Avg) Image: Correlation Level: 1:Slight (Low) 2:Moderate (Medium) 3:Substantial (High)														
UN	IT-I	SIT	E INVE	STIGA	TION A	AND SE	LECTI	ON OF	FOUNI	DATION			9 H	lours
undistur	nd objecti bed samp Bore log	ling-me	thods -	Split spo	on sam	pler, Thi	in wall s	ampler,		-	U	-	-	
UN	IT-II	SHA	ALLOW	FOUN	DATIO	N							9 H	lours
deposits	tion-Loca -Terzaghi d differen	's form	ula and	BIS for	mula- B	earing c	apacity	from in-	situ test	s (SPT, S	SCPT and			-
UNI	IT-III	FOO	DTING	S AND]	RAFTS								9 H	lours
• •	f foundat p footings						-	f founda	tions-sp	read foot	ings-con	bined fo	otings-tra	apezoidal
UNI	IT-IV	PIL	E FOU	NDATI	ON								9 H	lours
Hileys)-	f piles an Load ca	rrying	capacity	from i	nsitu te	sts (SP	T and S	CPT)-N	legative	skin frie	ction- Gr	oup capa	acity by	different
methods reamed j	(Feld's 1 piles.	ule, Co	nverse-]	Labarre	tormula)-Settler	ment of j	pile and	pile gro	oups- pile	e load tes	t (routine	e test onl	y)-Under
UN	IT-V	EAI	RTH PF	RESSUR	RE THE	ORY							9 H	lours
plane-Ea	quilibriur arth press to line lo	ure on r	etaining	walls o	f simple	configu	irations-	-		-	-			

TOTAL: 45 Hours

TEXT E	BOOKS:
1.	Punmia B.C, "Soil Mechanics and Foundations", Laximi Publications Pvt. Ltd, New Delhi, 17th edition, 2019.
2.	Gopal Ranjan and Rao A.S.R, "Basic and Applied Soil Mechanics", New Age International Publishers, New
REFER	ENCES:
1.	Venkatramaiah, C, "Geotechnical Engineering", New Age International Publishers, New Delhi, 2019.
2.	Murthy V.N.S, "Textbook of Soil Mechanics and Foundation Engineering; Geotechnical Engineering Series", CBS Publishers Distribution Ltd, New Delhi. 2017.
3.	Braja m.das, principles of foundation Engineering, Thomson Asia pvt.ltd, Singapore, 2016.

COURSE CODE COURSE NAME L T P C														
U190	CE604		LIMI	Г STAT	E DESI	GN OF	STEEI	L STRU	CTURE	ES	3	1	0	4
Course (Objective	e (s): Th	ne Purpo	ose of le	arning	this cou	rse is to	:						
1.	Impart	the basi	c knowl	edge abo	out steel	structur	e design							
2.	Underst	tand the	various	design	of conne	ctions in	n steel st	ructures	3					
3.				tension a					el					
4.	Examin	e the de	esign of	various	flexural	member	s in stee	1						
5.	Learn t	he class	ification	of vario	ous truss	es and d	esign of	purlin.						
Course (Outcome	(s) (CC)s): At t	he end o	of this c	ourse, t	he stude	ents will	be able	to:				
CO1	Apply t	he IS co	ode pract	tice for t	he desig	n of stee	el structi	ural elen	nents.(F	K1)				
CO2	Understand the bolted and welded connection for both axial and eccentric forces. (K2) Design the tension and compression members. (K5)													
CO3	Design the tension and compression members. (K5) Analyse and Design various types of flexural members. (K4)													
CO4	Analyse and Design various types of flexural members. (K4) Design different types of purlin (K5)													
CO5	Design different types of purlin.(K5) dge Level: K1 – Remember: K2 – Understand: K3 – Apply: K4 – Analyze: K5 – Evaluate:													
Knowled	lge Level	l: K1 −]	Rememb	ber: K2	2 – Unde	erstand:	K3 – 7	Apply:	K4 – A	nalyze:	K5 - Ev	aluate:		
CO – PC) Марріі	ng												
COs	Pos PSOs													
	PO1	PO3	PO4	PO10	PO11	PO12	PSO1	PSO2						
CO1	3	1	3	2	1	1	1	2	2	-	1	1	1	2
CO2	3	2	3	2	2	2	1	1	3	-	2	2	1	2
CO3	3	2	3	2	2	2	1	1	3	-	2	2	1	2
CO4	3	2	3	2	2	2	1	1	3	-	2	2	2	2
CO5	3	2	3	2	2	2	1	1	3	-	2	2	2	2
СО	3	1.8	3	2	1.8	1.8	1	1.2	2.8	-	1.8	1.8	1.4	2
(Avg)	elation L	ovol		1:Slight)•Modor	ate (Med	lium)		2.Suba	tantial (H	Jigh)
	IT-I		RODU		(L0W)		4	2.1010001		iiuiii)		5.5408		Hours
Structura					ades and	1 mecha	nical pr	operties	of steel	advanta	uges of st	eel as st		
types of s			-	-			-	-			-			
of streng								-						
combinat										U				
UNI	IT-II	DES	SIGN O	F CON	NECTIO	ONS	-						9+3=12	2 Hours
Basic co							of bolts	-modes	of failu	res; Joint	s subject	ed to dir		
load. We	lded com	nection:	Types a	nd stren	gth of w	elds- Bu	utt and f	illet wel	ds -Joint	s subject	ed to dire	ct load a	nd eccen	tric load
UNI	T-III	DES	SIGN O	F TENS	SION A	ND COI	MPRES	SION N	AEMBE	ERS			9+3=12	2 Hours
Tension	members	Variou	s forms-	Modes	of failur	e-Analy	sis and o	design o	f axially	loaded t	ension m	embers.	Design o	f axially
loaded co	-							-						
of failur	e; Design	n of ax	ially lo	aded: S	imple s	ection c	ompress	sion me	mbers-	Design of	of single	and do	uble ang	le strut-
Continuo	ous and di	scontin	uous stri	ut.										
UNI	T-IV	DES	SIGN O	F BEAN	AS								9+3=12	2 Hours
Beams: 7	Types of	steel be	ams- Me	odes of t	failure -	Design o	of latera	lly supp	orted an	d unsupp	orted bea	am: Rolle	ed beam-	built-up
beams- I	-	r streng	th and s	erviceat	ility- W	eb yield	ling-We	b crippl	ing-Bear	ring stiffe	eners. De	sign prin	ciples of	Welded
plate gird	ler.													
UN	IT-V	DES	SIGN O	F INDU	STRIA	L STRI	JCTUR	ES					9+3=12	2 Hours
Design o	of industr	ial buil	ding: Ro	oofing -	claddin	g and w	vall mat	erial –	Structur	al compo	nents an	d framin	g- Types	of roof
trusses -	compone	nts - Lo	ads and	Its com	oination-	Wind lo	ad estin	nation fo	or differe	ent type o	f zones-I	Design of	purlins.	
											ТС)TAL (4	5+15): 6	0 Hours
TEXT B	OOKS:													
1.	Duggal S.K, "Design of Steel Structures", Tata McGraw-Hill Education, 2019.													
2.	Duggal S.K, "Design of Steel Structures", Tata McGraw-Hill Education, 2019. Subramanian N, "Design of Steel Structures", Oxford University Press, New Delhi 2008.													

REFER	ENCES:
1.	Bhavikatti S.S, "Design of Steel Structures", I.K. International Publishing House Pvt. Ltd, New Delhi, 2017
2.	Negi L.S, "Design of Steel Structures", Tata McGraw Hill Publishing Pvt Ltd, New Delhi, 2007.
3.	Jayagopal L.S, and Tensing, "Design of Steel Structures" Vikas Publishing House Pvt. Ltd, India, 2016.
4.	Gambhir M.L, "Fundamentals of Structural Steel Design", McGraw Hill Education India Pvt. Ltd, 2013
5.	Shiyekar M.R, "Limit State Design in Structural Steel", Prentice Hall of India Pvt. Ltd, 2013.

COURSE CODE COURSE NAME									L	Т	Р	С									
U190	CE605		CIVIL	ENGIN	EERIN	G SOF	TWAR	E APPL	ICATI	ON	0	0	4	2							
Course (Objective	e (s): Th	ne Purpo	ose of le	arning	this cou	rse is to	:													
1.	Practice	e the stu	dents to	analyse	the stru	ctural el	ements	with diff	erent lo	ad combi	nations.										
2.	Design	the elen	nents as	per the t	function	al requir	rements	provideo	d in the	IS Code p	provision	s.									
3.	Incorpo	rate the	design of	develope	ed for el	ements a	and deve	elop then	n into dı	awings.											
Course (Apply the principles of mechanics to apply the students will be able to:																				
CO1	Apply the principles of mechanics to analyse the structural elements (K3)																				
CO2	Design the elements with different load combinations to suit its intended purpose.(K5) Produce drawings as output with sectional and elevation details of the design.(K3)																				
CO3			-	-						-											
Knowled	-		Rememb	er: K2	– Unde	rstand: H	K3 – Ap	ply: K	4 – Ana	lyze: K5	– Evalua	te:									
CO - PC) Mappi	ıg																			
COs	Pos PSOs PSOs																				
201	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2							
CO1	3	1	3	1	1	1	3	1	1	-	-	2	1	2							
CO2	3	2	3	1	2	1	3	-	1	-	-	2	1	2							
COe3	3	2 1.67	3	1	2	1	2	-	1	-	-	1	1	22							
CO	3	1.07	3	1	1.67	1	2.67	0.33	1	-	-	1.6	1	2							
Corre	(Avg) Image: Correlation Level: 1:Slight (Low) 2:Moderate (Medium) 3:Substantial (High)																				
LIST OF	EXPER	RIMEN'	TS:																		
 Rei Rei	nforced of nforced of nforced of nforced of nforced of alysis of alysis, de sign of C	concrete concrete concrete concrete concrete two Stor sign and	column slab (or isolated beam c dog-leg rey RC t l detailin	(Short a ne way a l footing olumn c gged stai puilding ng of ste	and long nd two onnectic rcase el roof t	; column way) ons		tion)						0 Hours							
TEVT D	OOVEL	CODE	DOOV	1.								10	JTAL: 6	0 Hours							
TEXT B					for Dla	n and D	ainform	d concre	ato												
1. 2.								on in Ste													
2. 3.				Concrete					el												
4.								proporti	oning												
4. 5.										rd Edition	McGra	w Hill Fe	lucation	2017							
<i>5</i> .									-	ll Educati			incution,	2017							
REFERI		, L	-osigii 0	1 51001 5		5,5 C			51aw-111		.011, 2017										
1.		amanian	"Desig	n of rei	forced	concrete	Structu	res" 1 st	Edition	Oxford	Universit	v Press	2013								
2.														1							
2.	55 Dila	, mutti,	2001511	51 51001	Shacu	гоз. Б у 1	chini St		154 45 1	SS Bhavikatti, "Design of Steel Structures: By Limit State Method as Per IS: 800 – 2007", I K International											

COURS	E CODE	,			CO	URSE I	NAME				L	Т	Р	С		
U190	CE606			Ι	NNOVA	TIVE	PROJE	CTS			0	0	2	1		
Course (Objective	e (s): Th	e Purp	ose of le	arning (this cou	rse is to	:								
1.	To impa	art the k	nowledg	ge of exe	ecution of	of innova	ative pro	ojects								
2.	To appl	y the kr	owledg	e of Civ	il Engine	eering fo	or innova	ative pro	ojects							
3.	To interpret the outcomes of the projects pertain to industrial applications															
Course (Dutcome (s) (COs): At the end of this course, the students will be able to:															
CO1	To identify the thrust areas in Civil Engineering and related domains.(K3)															
CO2	To formulate the methodology in interdisciplinary mode. (K4)															
CO3	Draft the methodology and develop the product related to the concept.(K5)															
Knowled	lge Level	: K1 – I	Rememb	er: K2	2 – Unde	erstand:	K3 – A	Apply:	K4 – A	nalyze:	K5 – Ev	aluate:				
CO – PC) Mappir	ıg														
COs						I	Pos						PS	SOs		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	1	4	2	1	2	2	3	2	1	-	-	2	1	2		
CO2	3	3	3	2	2	2	1	2	3	-	-	1	2	2		
CO3	1	1	2	2	1	2	3	-	2	-	-	2	2	1		
СО	2.2	2	3	1.4	1.8	1.4	3	1	1.4	-	-	2	1.4	2		
(Avg)				4 011 1												
Corr	elation L	evel:		1:Slight	(Low)		2:Moderate (Medium)						3:Substantial (High)			

The objective of this course is to impart and inculcate the interdisciplinary thinking knowledge of the Civil Engineering students. Any existing problem in the society or industry related to Civil Engineering may be taken up by the students and innovative low cost solutions may be derived by the students etc. A team of students comprising not more than three may be mentored by the faculty in the department.

- Every project may hold one academic expert who is appointed by the HoD of the Department and industry mentor who is expert in the innovative area chosen by the team.
- The project problem formulated should be innovative and unique in Civil Engineering domain.
- Prior industry visits may be arranged to the industry where the problem is identified for example Cement manufacturing industry, RMC plants, Steel manufacturing industries etc.,
- Final solution identified by the student may be converted in to prototype and subjected to IRF may be filed along with guidance of the guide and HoD
- The hours allotted for this course shall be utilized by the students to receive directions from the guide to refer the existing literatures and perform the experiments in the lab to come up with the low cost solutions.
- Periodic reviews shall be held by the expert committee identified by the Head of the Department and assessment may be done.
- Monitoring committee may be appointed to regularly monitor the progress work of the student team
- Final report and relevant drawings may be submitted and final assessment may be done by the external member appointed by the Institute.

		IOTAL: 30 Hours
WEBSI	TES:	
1.	http://www.mycollegeproject.com/Innovative%20Projects.html	
2.	https://www.electronicsforu.com/mini-projects-ideas	
3.	https://www.innovation-project.info/	

COURSE CODE COURSE NAME L T P											С													
U190	CE916		REPAI	R AND	REHAI	BILITA	TION C)F STR	UCTUR	RES	3	0	0	3										
Course Objective (s): The Purpose of learning this course is to:																								
1.																								
2.	-		-						internall	y and ext	ernally.													
3.	Suggest	t the sui	table rep	pair mate	erials for	differe	nt deteri	oration.																
4.		-	-	-			-		e and ste	eel struct	ures.													
5.	Suggest	t suitabl	e repair	techniqu	ues for d	ifferent	deterior	ation.																
Course (
CO1	Familia	rize the	Strategi	es in ma	intenand	ce and re	epair of a	all type	of struct	ures .(K2	2)													
CO2	Learn the crack formation and moisture accumulation internally and externally in the structure.(K2) Select suitable repair materials for different worsening happen in the concrete structure.(K3)																							
CO3																								
CO4	Check with suitable method for any distress happen in the structures.(K3) Renovate and Retrofit the distress in any existing structure.(K3)																							
CO5							-																	
Knowled	-		Rememb	per: K2	2 - Unde	erstand:	K3 – A	Apply:	K4 – A	nalyze:	K5 - Ev	aluate:												
CO – PO Mapping																								
COs	Pos PSOs PSOs																							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2										
CO1	-	-	1	-	1	1	3	2	1	-	-	2	1	2										
CO2	3	2	3	2	2	1	3	1	1	-	-	2	1	2										
CO3	1	2	3	1	3	1	3	1	1	-	-	2	1	2										
CO4	1	2	3	2	2	2	3	3	2	-	-	2	2	2										
CO5	1	3	3	2	2	2	3	1	2	-	-	2	2	2										
CO (Avg)	1.4	1.8	2.6	1.4	2	1.4	3	1.6	1.4	-	-	2	1.4	2										
Corr	elation Level: 1:Slight (Low) 2:Moderate (Medium) 3:Substantial (High)													High)										
UNIT-I MAINTENANCE AND REPAIR STRATEGIES													ours											
Introduction-Facts and importance of maintenance-Various aspects of inspection-Assessment procedure for evaluation												aluating												
damaged	structure	-Causes	s of dete	rioratior	n-Diagno	osis of ca	uses -F	low cha	rts for di	iagnosis.														
													0.77											
	IT-II			CRAC							* *			ours										
Building			-						-		-	-	-											
trees -Ch ground -I							-				-													
solid wal					-	ourse -n		xage -r i		018-Leak	age of co	merete si	aus-Dain	piless in										
Sond Wa	is cond	mourion	11,810	scopic s	uno.																			
UNI	T-III	MA	TERIA	LS FOF	R REPA	IR							9 H	ours										
Introduct	ion-Conc	rete che	emicals-	Special	element	s for acc	elerated	strengt	h gain-E	Expansive	cement-	Polymer	concrete	-Sulphur										
infiltrated							rete-SIF	CON-SI	MCON	-Rust elii	minators	and poly	mers coa	ating for										
rebars du						*																		
	T-IV			G OF C										ours										
Concrete				-				-	-	-			-											
structure														-										
Defects i Distress of		-	-Mecha	anisin o	r corros	ion -De	sign to	protect	against	corrosio	i -Desigi		brication	errors -										
1311638 (
UN	IT-V	STR	RENGT	HENIN	G OF E	XISTIN	IG STR	UCTU	RES				9 H	ours										
Lintel: F	unctions	of lintel	and sur	nshade-7	Types of	lintel;	Arches:	Constru	ction-El	ements-C	lassificat	ion. Doc	rs and W	vindows:										
Technica	l terms-'	Гуреs a	and the	ir suital	bility. S	stair and	d stair	cases:T	erminolo	ogy-Loca	tion and	classifi	cation o	f stairs-										
Requiren	nent of go	od stair	: Form	works: C	Centering	g and shu	uttering	- Scaffo	ldings, s	shoring a	nd under		Technical terms-Types and their suitability. Stair and stair cases:Terminology-Location and classification of stairs- Requirement of good stair. Form works: Centering and shuttering - Scaffoldings, shoring and underpinning - Slip forms.											
												T (
												10	DTAL: 4	5 Hours										
TEXT B			•			0.7. 11.1		~			.			5 Hours										
TEXT B 1. 2.	Guha P				-		-			Agency rs Distrib		Calcutta	, 2011.	5 Hours										

REFER	ENCES:
1.	Gambhir M.L, "Concrete Technology", Tata McGraw Hill, 2012.
2.	Neville A.M., Properties of Concrete, Fifth edition, Pearson Education Ltd.
3.	Ravishankar.K, Krishnamoorthy.T.S, "Structural Health Monitoring, Repair and Rehabilitation of Concrete
	Structures", Allied Publishers, 2004.
4.	Denison Campbell, Allen and Harold Roper, "Concrete Structures, Materials, Maintenance and Repair", Longman
	Scientific and Technical UK, 1991.

COU	URSE C	CODE				COUR	SE NA	ME			L	Т	Р	С
τ	J 19CE9	17		P	REFAB	RICAT	FED ST	RUCT	URES		3	0	0	3
Cours	se Objeo	ctive (s)	: The F	Purpose	of lear	ning thi	is cours	e is to:						
1.	To De	scribe t	he neces	ssity of	prefabri	cation a	ind appr	eciate n	nodular	constructio	on			
2.		To Describe the structural behaviour of wall panels, columns and shear walls To Design the different joints used for prefabricated structural elements with proper detailing												
3.		-		-		-				-	-	-		
4.				-		ements	and also	o have t	he know	ledge of tl	ne construe	ction methor	ods using t	hese
5.	To des	sign the	pre-fab	ricated	units									
									ts will k	be able to:				
CO			• •	es of pr				X3)						
CO				n of roo		,	· ·							
CO	_		-	g and de	-	-								
CO				ne prefa		structu	are.(K3)							
CO	-	-		l units.(l										
	-		1 – Ren	nember:	K2 –	Unders	tand:	K3 – Aj	pply: I	K4 – Analy	/ze: K5 -	- Evaluate:		
CO –	PO Ma	pping												
Cos		l.	l.		I	l.	Pos	1		1		1	PS	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	3	1	3	1	1	1	3	1	1	-	-	2	1	2
CO	3	2	3	1	2	1	3	-	1	-	-	2	1	2
CO	3	2	3	1	2	1	3	-	1	-	-	2	1	2
CO	1	2	3	2	2	2	3	3	2	-	-	2	2	2
CO	1	3	3	2	2	2	3	1	2	-	-	2	2	2
CO	2.2	2	3	1.4	1.8	1.4	3	1	1.4	-	-	2	1.4	2
_(Av	orrelatio	n Leve	•	1.9	Slight (L	ow)		2.1	Moderat	e (Medium))	3.81	bstantial (High)
	NIT-I				<u> </u>	.0)				e (meanin	1)	5.50	9 H	
						aterials	- Mo	dular co	o-ordina	tion - St	andardizat	ion - Svs		
	portation			-			10100		o orunic	uion Sta	andaraizat	ion bys		luction
1				0										
UN	NIT-II	PF	REFAB	RICAT	ED CO	MPON	IENTS						9 H	ours
Behav	viour of	structur	al Com	ponents	-Large	panel co	onstruct	ion- Ap	plicatio	n of pre str	essing of 1	oof memb	ers-Floor	systems -
Two v	vay load	bearing	g slabs -	- Wall p	anels-Sl	near wa	lls- segr	nental c	onstruct	tions				
UN	IIT-III	DI	MENS	IONIN	G AND	DETA	ILING	OF JO	INTS				9 H	ours
	-		-	•						onstruction		-		
								Beam,	Colum	n to Colum	n,-Colum	n to Found	ation, Con	nections
betwee	en wall	panels,	Connec	tions be	tween f	oor par	les							
UN	NIT-IV	EF	RECTIO	ON OF	STRU	TURF	S						9 H	nurs
								oductio	n - Stori	ing and ere	ction equi	pment - Sł		
		-				-				cated build			accorning a	ia moura
	NIT-V			OF PR							8		9 H	nurs
									and wa	ter tanks e	tc., Applic	cation of p		
	fabricati		i indust	inur sere	etures,	i i i i i i i i i i i i i i i i i i i	ionica o	anango	und via	iter tunnis e	iei, rippiie	auton of p	e shessed	concrete
in pro-														
												,	FOTAL: 4	5 Hours
ТЕХТ	FBOOK	S:												
1.	Huber	t Bachn	nann, A	lfred Ste	einle, "P	recast (Concrete	e Structu	ures", Ei	rnst and Sc	hn GMBF	I & Co., K	.G., 2011.	
2.	"Struc	tural de	sign ma	inual", I	Precast o	concrete	connec	tion det	ails, So	ciety for th	e studies i	n the use o	f precast c	oncrete,
	Nether	land Be	etorVerl	lag, 200	9.									

REFE	REFERENCES:									
1.	Lewicki B, "Building with Large Prefabricates", Elsevier Publishing Company, Amsterdam / London / New York,									
	1966.									
2.	Levi M, (2000), Precast concrete materials, Manufacture properties and usage, Applied Science Publishers, London.									
3.	Kim S. Elliott, "Precast Concrete Structures" Butter-Heinemann, 2002.									
4.	LassloMokk, "Prefabricated Concrete for Industrial and Public Sectors, AkademiaiKiado", Budapest, 1964.									

COURS	E CODE	E			CO	URSE	NAME				L	Т	Р	С	
U190	CE920		TRA	FFIC E	NGINE	ERING	AND M	IANAG	EMEN	Г	3	0	0	3	
Course (Objectiv	e (s): Th	ne Purp	ose of le	arning	this cou	rse is to	:							
1.	Inculca	te the tr	affic cha	aracteris	tics and	assess th	ne relate	d traffic	problem	ns in India	ı				
2.	Impart the basic knowledge in the concepts of traffic surveys and its level of service.														
3.	Impart skills in characterizing traffic design of facilities to control and manage traffic.Aware the students about road accidents, traffic and environment hazards in transportation interaction.														
4.	Aware	the stud	ents abo	ut road	accident	s, traffic	and env	vironme	nt hazaro	ls in trans	portation	n interact	ion.		
5.	Develo	p a stroi	ng know	ledge ba	se of tra	iffic plar	nning an	d its ma	nagemer	nt in any t	ransport	ation area	a.		
Course (Course Outcome (s) (COs): At the end of this course, the students will be able to:														
CO1															
CO2	Design the Channels, Intersections, signals and parking arrangements.(K4)														
CO3	Develop Traffic management Systems.(K3)														
CO4	Analyse the causes and report the accident. (K2)														
CO5	-				-			-	measure						
Knowled	0		Remem	ber: K	2 - Under	erstand:	K3 – .	Apply:	K4 – A	nalyze:	K5 - Ev	aluate:			
CO – PC) Mappi	ng											Γ		
COs			I	I			Pos	1	I	I		I		SOs	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	1	2	3	1	1	2	1	1	-	-	3	2	2	
CO2	3	2	2	3	2	1	2	1	1	-	-	3	2	2	
CO3	3	3	3	3	2	1	3	3	2	-	-	3	2	2	
CO4	3	3	3	3	2	3	3	3	3	-	-	3	3	2	
CO5	3	3	3	3	2	2	3	3	3	1	-	3	3	3	
CO	3	2.4	2.6	3	1.8	1.6	2.6	2.2	2	0.2	-	3	2.4	2.2	
_(Avg) Corr	elation L	evel:	1	1:Sligh	t (Low)	Į	ļ	2:Moder	ate (Med	dium)	<u> </u>	3:Subs	tantial (H	High)	
UN	IT-I	TRA	AFFIC	PLANN		ND CHA							9 Hours		
Road Ch	aracteris	tics - R	oad use	r charac	teristics	- PIEV	theory	- Vehic	le - Per	formance	characte	eristics -	Fundam	entals of	
traffic flo	ow - Urb	an traff	ic probl	ems in l	ndia - I	ntegrate	d planni	ng of to	wn ,cou	intry ,reg	ional and	l all urba	n infrast	ructure -	
Towards	sustainal	ole appr	oach la	and use a	& transp	ort and i	modal ir	itegratio	n.						
UN	IT-II	TRA	AFFIC S	SURVE	YS								9 H	ours	
Traffic s	urveys -	Speed,	journey	v time a	nd dela	y survey	/s - Vel	nicles vo	olume si	urvey inc	luding n	on-moto	rized tra	nsports -	
Methods												vey - Ac	cident a	nalyses -	
methods,	interpret	tation ar	nd prese	ntation -	Level o	f service	e - Conc	ept, app	lications	and sign	ificance.				
UNI	T-III	TR	AFFIC	DESIG	JAND	VISUAT							9 H	ours	
Intersect								Signal d	esign - (Coordina	tion of s	ignals -C			
Traffic si	• •			•			-	-	-			-B	inde sep		
	T-IV			SAFET									9 H	ours	
Road ac									- Traffic	and env	vironmen	t hazards			
pollution				-											
transport							2	1		÷					
	IT-V	TRA	AFFIC	MANA	GEMEN	T							9 H	ours	
Area tra							igement	with IF	RC stand	lards 7	Fraffic re	gulatory			
demand		-	•		•		-								
- Intellig												5			
TOTAL: 45 Hours															
TEXT BOOKS:															
1.		li.L.R. "	Traffic	Enginee	ring and	Transpo	ort Planr	ning", K	hanna Pi	ublishers,	Delhi, 2	013.			
2.										Macmillar					
	1			-			-								

RI	REFERENCES:										
	1.	Fred L, and Mannering, Scott S. Washburn and Walter P.Kilareski, Principles of Highway Engineering and Traffic									
		Analysis, Wiley India Pvt. Ltd, New Delhi, 2011.									
	2.	Garber and Hoel, "Principles of Traffic and Highway Engineering", CENGAGE Learning, New Delhi, 2010.									
	3.	Hobbs F.D. "Traffic Planning and Engineering", University of Brimingham, Peragamon Press Ltd, 2005.									

URSE	CODE	COURSE NAME	L	Т	Р	С					
U19GI	E602	PROFESSIONAL DEVELOPMENT SKILLS	0	0	2	1					
		(TOR OWNER DEDG ONE 2)									
Course Outcome (s) (COs): At the end of this course, the students will be able to:											
01	Explain th	e values of career planning and prepare a resume									
02	Demonstr	ate interview skills and undergo mock interviews and group discussion	8								
03	State entre	epreneurship and prepare business plan.									
nonstr	ating Sof	t -Skills capabilities in the following areas:									
Career	r planning	(Employment) – Resume writing - Tips for great resume									
	1 0		- FAQs								
Mock	interview	, mock stress interview	-								
e. Career Planning (Self Employment) Understanding Entrepreneurship - Advantages of being an Entrepreneur - Create a											
Business plan.											
	U19GI Irse O D1 D2 D3 nonstr Caree Interv Mock Mock Caree	D1Explain thD2DemonstrD3State entrononstrating SoftCareer planningInterview SkillsMock interviewMock Group DiCareer Planning	U19GE602 PROFESSIONAL DEVELOPMENT SKILLS Irrse Outcome (s) (COs): At the end of this course, the students will be able to: 01 Explain the values of career planning and prepare a resume 02 Demonstrate interview skills and undergo mock interviews and group discussions 03 State entrepreneurship and prepare business plan. 03 Innostrating Soft -Skills capabilities in the following areas: 04 Career planning (Employment) – Resume writing - Tips for great resume 05 Interview Skills - Importance of body language in an interview – Confidence building - Mock interview, mock stress interview 04 Mock Group Discussion Career Planning (Self Employment) Understanding Entrepreneurship - Advantages o	U19GE602 PROFESSIONAL DEVELOPMENT SKILLS 0 Irrse Outcome (s) (COs): At the end of this course, the students will be able to: 0 O1 Explain the values of career planning and prepare a resume 0 O2 Demonstrate interview skills and undergo mock interviews and group discussions 0 O3 State entrepreneurship and prepare business plan. 0 nonstrating Soft -Skills capabilities in the following areas: 0 Career planning (Employment) – Resume writing - Tips for great resume 1 Interview Skills - Importance of body language in an interview – Confidence building – FAQs Mock interview, mock stress interview Mock Group Discussion Career Planning (Self Employment) Understanding Entrepreneurship - Advantages of being a	U19GE602 PROFESSIONAL DEVELOPMENT SKILLS 0 0 Irrse Outcome (s) (COs): At the end of this course, the students will be able to: 0 0 O1 Explain the values of career planning and prepare a resume 0 0 O2 Demonstrate interview skills and undergo mock interviews and group discussions 0 O3 State entrepreneurship and prepare business plan. 0 nonstrating Soft -Skills capabilities in the following areas: 0 0 Career planning (Employment) – Resume writing - Tips for great resume 0 0 Interview Skills - Importance of body language in an interview – Confidence building – FAQs 0 Mock interview, mock stress interview Mock Group Discussion 0 Career Planning (Self Employment) Understanding Entrepreneurship - Advantages of being an Entrepreneurship - Advantages	U19GE602 PROFESSIONAL DEVELOPMENT SKILLS 0 0 2 urse Outcome (s) (COs): At the end of this course, the students will be able to: 0 0 2 O1 Explain the values of career planning and prepare a resume 0 0 2 O2 Demonstrate interview skills and undergo mock interviews and group discussions 0 0 2 O3 State entrepreneurship and prepare business plan. 0					

TOTAL: 30 Hours

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E/B.Tech. Semester VII under Regulations 2019 Branch: Civil Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours
		Theory					
1	U19GE701	Professional Ethics and Human Values	3	0	0	3	45
2	U19CE702	Construction Engineering Management	3	0	0	3	45
3	U19CE703	Earthquake Resistant Structures	3	0	0	3	45
4	U19CE922	Professional Elective - Bridge Engineering	3	0	0	3	45
5	U19CE924	Professional Elective - Prestressed Concrete Structures	3	0	0	3	45
		Open Elective					
	U19CS1001	Big Data Analytics					
	U19CS1002	Cloud Computing	3	0	0	3	
6	U19CS1003	Internet of Things					45
	U19CS1004	Mobile Application Development					
	U19EE1005	Electrification In Building Construction					
		Practical					
7	U19CE704	Estimation and quantity surveying	0	0	4	2	60
9	U19CE705	Design Project	0	0	4	2	60
9	U19CE706	Internship	0	0	0	2	60
10	U19CE707	Industrial Lecture	0	0	1	0	30
				To	tal Credits	24	

Approved By

Chairperson, Civil Engineering BoS	Member Secretary, Academic Council	Chairperson, Academic Council & Principal
Dr.R.Malathy	Dr.R.Shivakumar	Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Civil Engineering, Seventh Semester BE Civil Students and Staff, COE

COURS	E CODE				CO	URSE	NAME				L	Т	Р	С
U190	CE702			CON	STRUC	TION N	ANAG	EMEN	T		3	0	0	3
Course (Objective	e (s): Th	ne Purp	ose of le	arning	this cou	rse is to	:						
1.	Provide knowledge on the concepts of construction management.													
2.	Impart the basic knowledge in terms of planning and scheduling.													
3.	Demon	strate 1	the netw	vork pla	anning 1	nethod	s and re	source	levellin	g				
4.	Provide knowledge about managing of cost control in construction project.													
5.	Describe the procedures adopted in P.W.D. and C.P.W.D to establish accounts and stores.													
Course (urse Outcome (s) (COs): At the end of this course, the students will be able to:													
CO1	Discuss the basic principles of construction management. (K2)													
CO2	Explain the process involved in the Construction Planning and Scheduling.(K3)													
CO3	Describ	-	-				-							
CO4						-				on Indust				
CO5	Carry of	ut meas	urement	of worl	c, estima	tion and	l other a	ccount r	elated ac	ctivities a	s per gov	vernment	norms. (K3)
Knowled	lge Level	: K1 – 1	Rememt	oer: K	2 – Unde	erstand:	K3 – A	Apply:	K4 – A	nalyze:	K5 – Ev	valuate:		
CO – PO	Mappin	ıg												
COa]	Pos						PS	SOs
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	-	1	2	2	1	1	1	2	1	1
CO2	2	2	3	2	-	2	3	1	1	1	1	2	1	1
CO3	2	2	3	2	-	2	2	2	2	1	1	2	1	1
CO4	2	2	2	2	-	2	3	2	2	1	1	2	2	1
CO5	1	3	2	2	-	2	3	1	2	1	1	2	1	2
CO	1.8	2.2	2.2	1.8	-	1.8	2.2	1.2	1.6	1	1	2	1.2	1.2
(Avg)	elation L	ovol		1.Clight	t (Low)).Moder	ate (Med	tium)		2.Sub	stantial (H	Hab)
Corre		evel.		1.Siigii	t (Low)		4	2.10100001		iiuiii)		5.5408	stantiai (1	iigii)
UN	IT-I	INT	RODU	CTION									9 H	ours
Definitio					Project	t manas	gement-	Defin	ition of	project	manage	ement- F		
construc														
construc						es- Pro	ject sta	ges and	1 proce	ss group	os- Proje	ect life of	cycle- T	ypes of
organiza				<u> </u>										
	T-II						ND SC				1 5	<i>,</i> .		ours
Introduc Planning														
activity -	•			-								-	an - cn	lical
	<u> </u>										STEMS	-	9 H	ours
CONST														
estimate								-			-	-		
RESOU	-	-			-			-		-	-		-	
Effective								-		-			-	-
			machin	leffes a	na oqu	pinente	, in the second second	pi er pi	anning	1 1411111	.g 101 II	acorrais,		es, men
and organization. UNIT-IV COST CONTROL AND MANAGEMENT 9 Hours														
Prelimin									ash flov	v statem	ent - Jo	ob cost 1		
stock sta														
Financia										<u> </u>				
	T-V			TS AN	D STO	RES							9 H	ours
Measure														
revised e	estimates	s - com	pletion	of repo	ort and	certific	ates - c	laims a	nd trans	sfer clas	sificatio	n of tran	saction	- ledger

	s - interest account - cash book. suspense classification -Stores - maintenance inspection - inventories -
transfer	of surplus and accounting of shortage - stores - procedures adopted in P.W.D. and C.P.W.D.
	TOTAL: 45 Hours
TEXT B	OOKS:
1.	Chitkara, K.K., Construction Project Management, Tata McGraw Hill, New Delhi, Third Edition, 2014
2.	Eugenio Pellicer, VíctorYepes, Teixeira, Jose. C. Moura, Helder.P. and JoaquínCatala., Construction Management, Wiley-Blackwell, New Jercy, First Edition, 2013.
REFER	ENCES:
1.	Shrivastava, U K., Construction Planning & Management, Galgotia Publications, New Delhi, Third Edition, 2014.
2.	Kumar NeerajJha., Construction Project Management, Pearson Education, New Delhi, Second Edition, 2015
3.	Barbara J.Jackson. "Construction Management Jumpstart: The best first step toward a carrier in construction management" 2 nd Edition, Wiley, 2010.
4.	Punmia, B.C. and Khandelwal, K. K., Project Planning and Control with PERT and CPM,Laxmi Publications, New Delhi, Fourth Edition,2016
4.	https://cbt.eku.edu/sites/cbt.eku.edu/files/files/programs/Const.pdf

COURS	E CODE	2			CO	URSE	NAME				L	Т	Р	С
U190	CE703		EA	RTHQ	UAKE	RESIST	ANT S	FRUCT	URES		3	0	0	3
Course (Objective	e (s): Th	ne Purp	ose of le	arning	this cou	rse is to	:			1		1	
1.	Underst	tand the	termino	ology of	earthqua	ake Pher	nomena							
2.	Realize the Causes and Effects of Earthquake Identify the Fundamentals of Earthquake Vibrations of Structures													
3.	-				-									
4.	Compute the Damage and failure of Concrete and Masonry Buildings due to earthquake													
5.	Cognize the Codal Provisions and Design Philosophy													
	ourse Outcome (s) (COs): At the end of this course, the students will be able to:													
CO1	Know the meaning of terms of earthquake and guidelines of earthquake preparedness (K1)													
CO2	Understand the type of failure occurred due to earthquakes in the specified zone based on the given criteria(K5)													
CO3	Recogn	ize the e	equation	of moti	on for v	arious p	arameter	rs of eart	thquake((K5)				
CO4		•	-	mage oc	curred i	n the giv	ven type	of build	ings bas	ed on ear	thquake	intensity	in the giv	/en
	seismic				610	1 6			.1 1	• .	. 1 . 1 . 1	C1	•	
CO5	Explain zone.(K		evant pro	ovisions	of IS co	des for (construc	tion of e	arthqua	ke resista	nt buildii	ng for the	e given se	ISMIC
Knowled		,	Doment) II1	motor 1	V 2	Annley	VA A	noluze	<i>V5</i> E	alucto		
Knowled CO – PC	-		Kememt	ber: K	2 - 0nde	erstand:	K3 – I	чррту:	К 4 – А	naryze:	K) – EV	aluate:		
	марри	Ig				1	Pos						DS	SOs
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	2	1	2	2	2	2	1012	2	2
CO2	3	3	3	3	3	2	1	2	2	2	2	1	2	2
CO3	3	3	3	3	3	2	1	2	2	2	2	1	2	2
CO4	3	3	3	3	3	2	1	2	2	2	2	1	2	2
CO5	3	3	3	3	3	2	1	2	2	2	2	1	2	2
СО	3	3	3	3	3	2	1	2	2	2	2	1	2	2
Corre	elation L	evel:		1:Slight	(Low)		4	2:Moder	ate (Meo	lium)		3:Subs	stantial (H	ligh)
TINT			• • • • •	41									0	
	IT-I			arthqua			71 4-	anth for		often alt	l		9	Hours
Definitio Earthqua		-			-			-				-		•
response				•		-	-						-	
shaking a		orking	principle	e, Richte	er scale.	Guidelir	nes for E	Earthqua	ke prepa	aredness:	Individu	al, Home	e and con	nmunity
planning.														
UNI	T-II	Cau	ises and	Effects	of Eart	hquake							9 H	lours
Causes a	nd effects	s of eart	hquake.	Format	ion of ea	arth and	its cores	s. Forma	tion, typ	es and m	novement	of tecto	nic plates	s, Elastic
rebound	heory, T	ypes of	earthqua	ake and	Faults. C	Ground s	shaking,	Ground	failure,	Tsunami	and fire.			
TINI	T-III	Fun	domont	als of F	arthauc	ko Vib	notiona	of Struc	tumog				01	lours
Equation										es of Free	dom Si	mplified		
Freedom		< P						1 /				1	0	0
Degree o	f Freedor	n Syste	m), Equ	ation of	Motion					-		-	•	
Freedom						•1 1•							0.11	-
	T-IV			nd Maso	-	-		of dam	ang 1- 1					lours
Typical of Sliding of	-		-			-			-		-	-		-
Sliding o of reinfor			-			-			-	-		-	-	-
stone ma		oars, 10	unuatioi	i ənikiilğ		umg. 13	pical u	anage a	nu tallu		ne masul	ny, caus		nages III
	J													

UNI	IT-V Codal Provisions and Design Philosophy		9 Hours							
Codal Pr	ovision and Design Philosophy : IS: 1893 (part I): General provisions and principl	les for desig	n of earthquake							
resistant	resistant buildings, assumptions in earthquake resistant design of structure (No numerical). IS: 13920 Ductile detailing,									
meaning	meaning of ductility, need of ductility in concrete structure, typical sketches with reinforcement details of columns, beams and									
	lumn connections showing longitudinal steel, splicing of steel, transverse steel, stir	rrups as per	IS: 13920. (No							
numerica	l)									
		Total 45 I	Tours							
		Total : 45 H	Iours							
TEXT B	OOKS:									
1.	Earthquake Resistant Design of Structures Agarwal, Pankaj Shrikhande, Manish PHI L	earning, De	lhi,2011 ASIN:							
	B00K7YFYVE ISBN-13 9788120328921									
2.	Earthquake Resistant Design of Structures Duggal, S. K. Oxford University P 9780198083528	ress, Delhi,	2013 ISBN-13							
REFERI	ENCES:									
1.	Elements of Earthquake Engineering Jai Krishna , A. R. Chandrashekharan Chandra, B	3. South Asia	in Publishers Pvt							
2.	IITK-BMTPC Earthquake Tips- IIT Kanpur									
3.	IS 1893(Part I):2002, Indian Standard Criteria for Earthquake Resistant Design of Structures- General Provisions									
	and Buildings, BIS, New Delhi.									
4.	IS 13920:1993 Ductile Detailing of Reinforced Concrete Structures subjected to Seism	ic forces-Co	de of Practice,							
5.	IS 13935- Repair and seismic strengthening of building: Guidelines									

COURS	SE CODE				CO	URSE	NAME				L	Т	Р	С
U190	CE704		EST	[IMAT]	ION AN	D QUA	NTITY	SURV	EYING		0	0	4	2
Course	Objective	: (s): Th	e Purpo	ose of le	arning t	this cou	rse is to	:				1		
1.	Impart t	he basic	knowle	dge on	the types	s of estir	nate for	RC buil	ding and	l Steel str	uctures.			
2.	Comput	e the qu	antities	for sewe	erage an	d water	supply s	ystems						
3.	Apply the knowledge to prepare the valuation reports for different types of structures.													
Course	Fourse Outcome (s) (COs): At the end of this course, the students will be able to:													
CO1	Explain	the basi	ic conce	pt of qu	antity es	timation	for diff	erent typ	pes of st	uctures (K3)			
CO2	Develop the quantities for sewerage and water supply systems (K3)													
CO3	Identify	the valu	lation fo	or differe	ent types	s of struc	ctures (K	(3)						
Knowled	dge Level	: K1 – F	Rememb	er: K2	2 – Unde	erstand:	K3 – A	Apply:	K4 - At	nalyze:	K5 - Eva	aluate:		
CO – PC) Mappir	ıg												
COs						I	Pos						PS	Os
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	POS
CO1	3	3	3	3	3	3	2	3	2	3	3	3	3	
CO2	3	3	3	3	3	3	2	3	2	3	3	3	3	
CO3	3	2	2	3	3	3	2	3	2	2	2	3	3	
СО	3	2.67	2.67	3	3	3	2	3	2	2.67	2.67	3	3	
Corre	elation Le	evel:	-	l:Slight	(Low)	1	2:	Modera	te (Med	um)	1	3:Subst	antial (H	igh)

Introduction to estimation - Types of estimate- Necessity-Overview of specification - Detailed and Drawing-Method of measurements- Calculation of quantities of brick work, RCC, PCC, Steel and Stone masonry - Plastering - Rate analysis - Tenders - Contracts-Types of contracts. Introduction to Valuation- Types of valuation - Necessity- Capitalized value-Depreciation value- Scarp value- Salvage value - Value of the building- Calculation of Standard rent- Mortgage- Lease.

- 1. Estimation of load bearing walls.
- 2. Estimation of R.C.C framed structures
- 3. Estimation of steel framed structures
- 4. Estimation of septic tanks and soak pit
- 5. Estimation of sewerage systems
- 6. Estimation of earth work-Cutting and filling
- 7. Estimation of roads
- 8. Estimation of retaining walls
- 9. Estimation of culverts
- 10. Bar bending schedule
- 11. Valuation of residential buildings
- 12. Valuation of industrial buildings

		TOTAL: 60 Hours
TEXT B	OOKS:	
1.	B.N Dutta 'Estimating and Costing in Civil Engineering', UBS Publishers & Distributors (P) Ltd, 2010.	
2.	B.S.Patil, 'Civil Engineering Contracts and Estimates', University Press, 2006	
REFER	ENCES:	
1.	Hand Book of Consolidated Data – 8/2000, Vol.1, TNPWD	
2.	Tamil Nadu Transparencies in Tenders Act, 2000	
3.	Standard Databook for analysis and rates	

COURS	E CODE	ODE COURSE NAME									L	Т	Р	С								
U190	CE705				DES	IGN PR	OJECI	Γ			0	0	4	2								
Course (Objective	e (s): Th	ne Purp	ose of le	arning	this cou	rse is to	:														
1.	Identify the initial level process involved in the design of Civil Engineering projects																					
2.	Underst	tand the	various	design s	steps and	1 design	involve	d using l	[S codes	for respe	ective stru	ucture typ	be									
3.	Impart	the appl	ication l	nowled	ge of an	y Civil E	Engineer	ing soft	ware for	design p	urpose											
Course (Outcome	(s) (CC)s): At t	he end o	of this c	ourse, tl	he stude	ents will	be able	to:												
CO1	Underst	tand the	problem	n statem	ent taker	n in the p	projects	and stud	ly the re	levant ap	plication	tools and	l software	es								
CO2	Apply t	he tools	and cor	cepts to	arrive t	he metho	odology															
CO3	Analyz	e the pro	oblem id	entified	and frar	ne the so	olution t	hat could	d be low	cost and	eco frier	ndly										
Knowled	lge Leve	ge Level: K1 – Remember: K2 – Understand: K3 – Apply: K4 – Analyze: K5 – Evaluate:																				
CO – PC	– PO Mapping																					
Cos						I	Pos						Pos PSOs									
										PO10	PO11	PO12	PSO1	PSO2								
CO1	3	2	PO3	PO4 3	PO5 3	PO6 3	PO7 2	PO8	PO9 3	PO10 2	PO11 1	PO12 2	PSO1 1	PSO2 2								
CO1 CO2											PO11 1 1											
	3	2	3	3	3	3	2	1	3	2	1	2	1	2								
CO2	3 3	2 3	3 3	3 2	3 2	3 2	2 3	1 2	3 2	2 2	1	2 1	1	2 2								
CO2 CO3	3 3 2	2 3 3	3 3 3	3 2 3	3 2 2	3 2 2	2 3 3	1 2 1	3 2 3	2 2 2	1 1 2	2 1 2	1 1 2	2 2 2								
CO2 CO3 CO4	3 3 2 3	2 3 3 3	3 3 3 3	3 2 3 3	3 2 2 3	3 2 2 2 2	2 3 3 3	1 2 1 1	3 2 3 3	2 2 2 1	1 1 2 1	2 1 2 2	1 1 2 2	2 2 2 3								
CO2 CO3 CO4 CO5 CO	3 3 2 3 3	2 3 3 3 3 3 3 3	3 3 3 3 3	3 2 3 3 3	3 2 2 3 2 2 2 2	3 2 2 2 3	2 3 3 3 3 3 3 3 3	1 2 1 1 1	3 2 3 3 3 3 3 3	2 2 2 1 2	1 1 2 1 2	2 1 2 1 2 2	1 1 2 2 2	2 2 3 2 2 2 2 2								
CO2 CO3 CO4 CO5 CO	3 3 2 3 3 3 3	2 3 3 3 3 3 3 3	3 3 3 3 3	3 2 3 3 3 3 3 3	3 2 2 3 2 2 2 (Low)	3 2 2 2 3	2 3 3 3 3 3 3 2	1 2 1 1 1 1 1 1	3 2 3 3 3 3 3 3	2 2 2 1 2	1 1 2 1 2	2 1 2 1 2 2	1 2 2 2 2 tantial (H	2 2 3 2 2 2 2 2								

The objective of this course is to impart and improve the design capability of the student. This course has been conceived purely on a design problem in any one of the disciplines of Civil Engineering, e.g., design of an RC structure, design of a wastewater treatment plant, design of a foundation system, design of traffic intersection, etc. The design problem can be allotted to either an individual student or a team of students comprising not more than three.

- Every project work shall have a guide who is a member of the Faculty of Civil Engineering of the College. The project guide of the design project is appointed by the Head of the Department.
- The project coordinator for the respective deign project is appointed by Head of the Department.
- The number of students in each team should not exceed three.
- The hours allotted for this course shall be utilized by the students to receive directions from the guide, in library reading, laboratory work, and computer analysis or field work. The student should also present his/her progress made in the project in the periodical reviews.

Each student/team shall finally produce a comprehensive report including background information, literature survey, problem statement, project work details, and conclusions. The candidate/team is expected to submit the project report on or before the last working day of the semester. After scrutiny, the report will be duly acknowledged by Head of the Department

COURS	SE CODE	E	COURSE NAME							L	Т	Р	C	
U190	CE706				I	NTERN	SHIP				0	0	0	2
Course	Objectiv	e (s): Th	ne Purp	ose of le	arning	this cou	rse is to	:			1	1	1	1
1.	Provide	es a real	time exp	posure o	n the lat	est and	trending	technol	ogies in	the core	companie	es		
2.	Refine	and clar	ify profe	essional	and care	eer goals	through	n critical	analysis	s of the in	nternship	experien	ice	
3.	Gain ar	Gain an understanding of workplace dynamics, professional expectations, and the influence of culture on both												
Course	Outcome	(s) (CC)s): At t	he end	of this c	ourse, t	he stude	ents will	be able	to:				
CO1	Unders	tand the	intricac	ies of in	nplemen	tation of	f textboo	ok know	ledge int	o practic	e (K2)			
CO2	Grasp r	new deve	elopmer	nts and u	pdate hi	mself or	• herself	(K3)						
CO3	Prepare	himselt	f/herself	for the	impleme	entation	of new t	echniqu	es (K5)					
Knowlee	dge Leve	Level: K1 – Remember: K2 – Understand: K3 – Apply: K4 – Analyze: K5 – Evaluate:												
CO – PO) Mappi	ng												
COs]	Pos						PSOs	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	POS
CO1	3	3	3	3	3	2	3	3	3	2	3	3	3	3
CO2	3	3	3	3	3	2	3	3	3	2	3	3	3	3
CO3	3	3	3	3	3	2	3	3	3	2	3	3	3	3
CO	3	3	3 3 3 2 3 3 2 3 3							3	3			
Corre	elation L	lation Level: 1:Slight (Low) 2:Moderate (Medium) 3:Substantial (High)												
COUPS	ECON												(0.33	_
COURS	E CONI												60 H	
The stud	lents will mer vaca		•		-	-		-	-	-				

the summer vacation of sixth semester. At the end of the training, a report on the work done and lessons learnt will be prepared and presented. The students will be evaluated through a viva-voce examination by a team of internal staff members.

COURS	E CODE	DE COURSE NAME									L	Т	Р	С
U190	CE707				INDUS	FRIAL	LECTU	IRE			0	0	1	0
Course (Objective	e (s): Th	ne Purp	ose of le	arning t	this cou	rse is to	:				Γ		
1.	Identify	any pra	actical p	roblem	related to	o Civil E	Engineer	ing dom	ain					
2.	Interact	Interact with the industry mentors to understand the problem statement												
3.	Aware	of vario	us probl	ems pre	vail in tł	ne consti	ruction i	ndustry	to solve					
Course (Outcome	(s) (CC)s): At t	he end o	of this c	ourse, tl	he stude	ents will	be able	to:				
CO1	Underst	tand the	real wo	rld prob	lem prev	ail in th	e field o	f planni	ng, anal	ysis, desi	gn and ex	ecution ((K2)	
CO2	Apply t	he core	concept	s to solv	e real w	orld Civ	il Engin	eering p	roblems	(K3)				
CO3	Analyze	e the pro	oblem st	atement	and arri	ve the ap	ppropria	te soluti	on meth	ods (K4)				
Knowled	dge Level	e Level: K1 – Remember: K2 – Understand: K3 – Apply: K4 – Analyze: K5 – Evaluate:												
CO – PC	PO Mapping													
COs		Pos PSOs								SOs				
COS														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO3	PO1 3	PO2 2	PO3 3	PO4 3	PO5 2	PO6 3	PO7 2	PO8	PO9 3	PO10 2	PO11	PO12 2	PSO1	PSO2 2
C01	3	2	3	3	2	3	2	1	3	2	1	2	1	2
CO1 CO2	33	2 3	3 3	3 2	2 2	3 2	2 3	1 2	3 2	2 2	1 2	2 1	1 2	2 2
CO1 CO2 CO3 CO	3 3 3	2 3 2 3	3 3 3	3 2 3 3	2 2 2	3 2 2	2 3 3 3	1 2 2 2	3 2 3	2 2 2	1 2 2	2 1 2 2	1 2 2	2 2 2 2 2
CO1 CO2 CO3 CO	3 3 3 3	2 3 2 3	3 3 3	3 2 3 3 1:Slight	2 2 2 2 2 2 t (Low)	3 2 2 2	2 3 3 3 2	1 2 2 2	3 2 3 3	2 2 2	1 2 2	2 1 2 2	1 2 2 2	2 2 2 2 2
CO1 CO2 CO3 CO	3 3 3 elation L	2 3 2 3 evel:	3 3 3 3	3 2 3 3 1:Slight	2 2 2 2 2 t (Low)	3 2 2 2 2 8 5 8 5 8 5 7 8 7 8 7 8 7 8 7 8 7 8 7 8	2 3 3 3 2 7	1 2 2 2 2:Moder	3 2 3 3 ate (Mec	2 2 2 lium)	1 2 2 2	2 1 2 2 3:Subs	1 2 2 stantial (F	2 2 2 2 High)
CO1 CO2 CO3 CO Corre	3 3 3 elation L	2 3 2 3 .evel:	3 3 3 3 conducte	3 2 3 3 1:Slight	2 2 2 2 2 t (Low) COURS	3 2 2 2 2 5E CON nts twic	2 3 3 3 VTENT re in a r	1 2 2 2:Moderation	3 2 3 3 ate (Mee	2 2 2 lium)	1 2 2 2 2 e invited	2 1 2 3:Subs	1 2 2 2 stantial (F 30 H arious in	2 2 2 1 1 1 1 2 1 1 1 0 1 0 1 5 1 0 1 1 1 1 1 1 1 1 1 1
CO1 CO2 CO3 CO	3 3 3 elation L lecture v experts v	2 3 2 3 evel:	3 3 3 3 conducted	3 2 3 3 1:Slight ed for the	2 2 2 2 t (Low) COURS	3 2 2 2 SE CON nts twic lge and p	2 3 3 3 VTENT re in a r	1 2 2 2 2 2:Moder month as field vis	3 2 3 3 ate (Mee	2 2 2 lium)	1 2 2 2 2 e invited	2 1 2 3:Subs	1 2 2 2 stantial (F 30 H arious in	2 2 2 1 1 1 1 2 1 1 1 0 1 0 1 5 1 0 1 1 1 1 1 1 1 1 1 1

1. 2. 3.)bjective Classify	e (s): Th			DDIDC									
1. 2. 3.	Classify	: (s): Th			DKIDG	E ENGI	NEERI	NG			3	0	0	3
2. 3.		Objective (s): The Purpose of learning this course is to: Classify the bridge based on the importance , historical background and other parameters											<u> </u>	<u> </u>
3.		the bri	dge base	ed on the	e import	ance , hi	storical	backgro	ound and	other par	ameters			
	Underst	and the	behavio	our of lo	ad distri	oution of	n supers	tructure	based o	n differer	nt theorie	s		
	Describ	e the ty	pes of su	ubstructu	ares used	l for all	type of l	oridges						
4.	List the	differen	nt types	of bearing	ngs used	in bridg	ges base	d on usa	ige.					
5.	Recommend the type of maintenance required based on rating of existing bridges e Outcome (s) (COs): At the end of this course, the students will be able to:													
Course C	Outcome	(s) (CC)s): At t	he end o	of this co	ourse, tl	he stude	ents will	be able	to:				
CO1	Brief the	e classif	fication	of bridg	es and in	nportant	of the p	aramete	ers invol	ved in bri	dge deve	lopment.	(K1)	
CO2	Describ	e in det	ail the d	esign pr	ocedure	for supe	rstructu	re of bri	dges usi	ng load d	istributio	n method	ls. (K4)	
CO3	Describ	e the co	mponen	ts of sub	ostructur	es and ty	ypes of t	footing u	used for	bridges. (K3)			
CO4	Evaluat	e the ro	le of bea	rings an	d its typ	es. (K2)								
CO5	Identify	the typ	e of insp	pection r	nethods	and retr	ofitting	measure	s accord	ing to the	e rating o	f existing	; bridges((K3)
Knowled	ge Level	: K1 – I	Rememb	ber: K2	2 – Unde	erstand:	K3 – 7	Apply:	K4 – A	nalyze:	K5 – Ev	aluate:		
CO – PO	Mappin	ıg												
COs						I	Pos						PS	SOs
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	2	1	2	2	2	2	3	3	3
CO2	3	3	3	3	3	2	1	2	2	2	2	3	3	3
CO3	3	3	3	3	3	2	1	2	2	2	2	3	3	3
CO4	3	3	3	3	3	2	1	2	2	2	2	3	3	3
CO5	3	3	3	3	3	2	1	2	2	2	2	3	3	3
CO	3	3	3	3	3	2	1	2	2	2	2	3	3	3
(Avg)														
Corre	elation L	evel:		1:Slight	t (Low)		2	2:Moder	ate (Med	lium)		3:Subs	tantial (H	ligh)
UN	T_T	INT	RODU	CTION									0 H	ours
Historical	l backgro	und of	bridges	and Cla									ble desig	n codes.
Loads an economic									terminat		esign dise	charge, 1	mear wa	ter way,
UNI									CONC	RETE)			9 H	ours
Load dist														
UNI	Г-Ш	BRI	DGE S	UPERS'	TRUCT	URE (F	PRESE	RESSE	ED CON	CRETE)		9 H	ours
Design of	-			-		•		-	-		ı - cable	layout - o	check for	· stresses
and diago	onal tensio	on - Dia	aphragm	s - end t	olock - si	hort tern	n and lo	ng term	deflectio	ons				
UNI					UCTUR									ours
Piers-Abu Cofferdar		-			rials for	substr	uctures-	Туре о	f found	ation-Spi	read- Pil	le found	ation- C	Caissons-
UNI	T-V	BEA	RING	5 & MA	INTEN	ANCE							9 H	ours
Importane Rating of		-			-	• •			-	-	on-Detail	led & Ro	outine ins	pection-
	5	2		-	-					-	То	tal : 45 h	ours	

TEXT B	SOOKS:
1.	Johnson Victor D., "Essentials of Bridge Engineering", Oxford and IBH Publishing Co., January 2019
2.	KrishnaRaju N, "Design of Bridges ", Oxford and IBH, 5 th Edition, 2019
REFER	ENCES:
1.	Ponnuswamy S, "Bridge Engineering", Tata McGraw-Hill Education, 2017.
2.	Jagadeesh T.R. and Jayaram.M.A., "Design of Bridge Structures", Prentice Hall of India Pvt. Ltd, 2013.
3.	Rajagopalan N. "Bridge Superstructure", Alpha Science International, 2006.

COURS	SE CODE	CODE COURSE NAME								L	Т	Р	С	
U190	CE924		PR	ESTRE	SSED (CONCR	ETE ST	FRUCT	URES		3	0	0	3
Course	Objective	e (s): Th	ie Purp	ose of le	arning	this cou	rse is to	:						
1.	1. Provide knowledge on the prestressed concrete and its concepts.													
2.	2. Impart the basic knowledge of prestresslosses in prestressed concrete members.													
3.	B. Instruct the design principles of flexural prestressed beams.													
4.	Aware t			-										
5.	Provide	U		0										
	Outcome													
CO1			-		•					methods				
CO2					-						s affectin	-		
CO3											rements.		(77.8)	
CO4	-		-	-					-	-	continuo			
CO5											nd concre		decks. (I	K2)
	dge Level		Remem	ber: K	2 - Under	erstand:	K3 – 1	Apply:	K4 – A	nalyze:	K5 - EV	aluate:		
	O Mappir	ıg				1	Dec						n	SOs
COs	PO1	PO2	PO3	PO4	PO5	PO6	Pos PO7	PO8	PO9	PO10	PO11	PO12	PSO1	SOs PSO2
CO1	3	2	105	3	3	2	1	1	105	-	-	2	3	1302
CO1	3	3	2	3	3	2	1	2	1	_	_	2	3	1
CO2	3	3	2	3	3	2	1	2	1	-	_	2	3	1
CO4	3	3	2	3	3	2	1	2	1	-	_	2	3	1
CO5	3	3	2	3	3	2	1	2	1	-	_	2	3	1
CO	3	2	1.8	3	3	2	1	2.8	1	-	_	2	3	1
00	5	-	1.0		U	-	-	2.0	•			-	e e	-
Cor	relation I	Level:	-	1:Sligh	t (Low)			2:Mode	rate (Me	dium)		3:Sub	stantial (High)
	IT-I			ES OF									-	Iours
			r prestre	ssed cor	crete- S	ystems a	and metl	nods of j	prestress	ing -Ana	lysis of s	ections: S	Stress, sti	rength and
load bala	ancing cor	ncept.												
UN	IT-II		SSES A	ND DEI	TLECT	ION OF	PREST	RESSI	ED CON	ICRETE	MEMB	ERS	91	Iours
														axation of
	eflection-F				0	0						0	-	unution of
				,							0			
	IT-III									GE ZOI				Iours
								-	-		-	-		members.
-					-	-	-			rminatior	of anch	orage zoi	ne stresse	es in post-
tensione	d beams-	IS code	method	; Design	of anch	orage zo	one reint	orceme	nt.					
UN	IT-IV	CO	MPOSI	TE BEA	MS AN	ID CON	TINUC	DUS BE	AMS				9 F	Iours
										n continu	ious bea	ms-Analy		secondary
	s-Concord													ý
UN	IT-V	MIS	SCELLA	ANEOU	S STRU	JCTUR	ES						9 H	Iours
Introduc decks.	tion-Gene	ral feat	ures and	d design	princip	les of: I	Prestress	ed conc	rete wat	er tanks,	pipes, si	leepers a	nd concr	ete bridge
												Г	OTAL:	45 Hours

TEXT B	OOKS:
1.	Krishna Raju N., "Prestressed Concrete", 5th Edition, Tata McGraw Hill Company, New Delhi, 2012
2.	Pandit G.S, and Gupta S.P, "Prestressed Concrete", CBS Publishers and Distributers Pvt. Ltd, 2012.
REFER	ENCES:
1.	Rajagopalan N, "Prestressed Concrete", Narosa Publishing House, 2002.
2.	Dayaratnam P, "Prestressed Concrete Structures", Oxford and IBH, 2013
3.	Lin T.Y, Ned. H, and Burns, "Design of Prestressed Concrete Structures", Wiley India Pvt. Ltd, New Delhi, 2013.

U19GE701 PROFESSIONAL ETHICS AND HUMAN VALUES 3003

COURSE OUTCOMES:

At the end of the course, the student will be able to

- Identify the core values that shape the ethical behavior of an engineer.
- Analyze and practice engineering ethics in their profession. •
- Apply codes of ethics in the context of social experimentation.
- Explore various safety issues and ethical responsibilities of an engineer.
- Adopt ethical practices pertaining to global issues.

	CO / PO Mapping (3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak											
COs					Progra	mme O	utcomes	s (POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12
CO1	2	1	1	1	1	2	3	3	3	2	2	3
CO2	2	1	1	1	2	2	3	3	3	3	3	3
CO3	2	1	3	1	2	3	3	3	3	3	3	3
CO4	2	2 1 3 1 1 3 3 3 3 2 3 3										
CO5	2	1 3 1 1 3 3 3 3 3 3 3										

UNIT-I **HUMAN VALUES**

Morals, Values and Ethics – Integrity – Work Ethics – Service Learning – Civic Virtue – Respect for Others – Living Peacefully - Caring - Sharing - Honesty - Courage - Valuing Time - Co-operation - Commitment - Empathy - Self-Confidence - Character - Introduction to Yoga and meditation for professional excellence and stress management.

UNIT-II ENGINEERING ETHICS

Senses of Engineering Ethics - Variety of moral issues - Types of inquiry - Moral Dilemmas - Moral Autonomy -Kohlberg's theory - Gilligan's theory - Consensus and Controversy - Profession and Professionalism - Professional Ideals and Virtues – Theories of Right action- Self Interest- Customs and Religion-Uses of Ethical Theories.

ENGINEERING AS SOCIAL EXPERIMENTATION **UNIT-III**

Engineering as Experimentation - Contrasts with standard experiments- Engineers as Responsible Experimenters -Importance and limitations of Codes of Ethics - Industrial Standards - A Balanced Outlook on Law - Industrial Standards-Case Study: Space shuttle challenger disaster.

UNIT-IV SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and Risk - Types of risk - Assessment of Safety and Risk - Risk Benefit analysis-Reducing Risk - Case Studies -Chernobyl and Bhopal plant disaster.

9

9

Collegiality and Loyalty –Respect for Authority- Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Importance and consequences of whistle blowing - Professional Rights – Employee Rights – Intellectual Property Rights (IPR) and its components– Discrimination.

UNIT-V GLOBAL ISSUES

9

Multinational Corporations – Environmental Ethics – Computer Ethics and Internet- Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership – Participation in professional societies- –Code of Conduct – Corporate Social Responsibility.

Lecture: 45, Tutorial: 0, TOTAL: 45 Hours

TEXT BOOKS

- 1. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, Indian Edition, Tenth reprint, 2017.
- 2. Professional Ethics and Human values- Sonaversity, Edition 2018.

REFERENCES

- 1. Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, 2012.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2016.
- 3. Charles E Harris, Michael S Pritchard and Michael J Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2009.
- 4. R.Subramanian, "Professional Ethics ", Oxford University Press, Second Edition, 2017.

Open Electives <u>CIVIL</u>

COURS	E CODE	CODE COURSE NAME								L	Т	Р	С	
U19C	E1004			D	ISASTI	ER MAN	NAGEN	IENT			3	0	0	3
Course (Objective	e (s): Th	ne Purp	ose of le	arning	this cou	rse is to	:			1	1	1	
1.			-		-	fects of a								
2.						mpact of								
3.	Underst	tand the	relation	ship and	l impact	of deve	lopment	projects	s on env	ironment	and soci	ety.		
4.	Dissem	inate the	e Nation	al policy	y and ro	le played	l by our	country	during	lisasters.				
5.	Provide	e basic k	nowledg	ge in ass	essment	t of disas	ters wit	h case st	udy.					
Course (Outcome	(s) (CC	Ds): At t	he end	of this c	ourse, t	he stude	ents will	be able	to:				
CO1	Disting	uish var	ious typ	es of dis	asters, t	heir cau	ses and i	impacts	on envir	onment a	nd socie	ty (K2)		
CO2	Explain	differe	nt phase	s of disa	ster mai	nagemer	t cycle	(K3)				-		
CO3	Assess	vulnera	bility an	d prepar	e disaste	er risk re	duction	measure	es (K4)					
CO4	Explain	the vul	nerabili	y profile	e of Indi	ia(K5)								
CO5	Prepare	hazard	zonatio	n maps f	or all ty	pes of h	azards (K4)						
Knowled	lge Level	l: K1 – 1	Rememl	oer: K	2 – Unde	erstand:	K3 – A	Apply:	K4 – A	nalyze:	K5 – Ev	valuate:		
CO – PC) Марріі	ng												
Cos]	Pos						PS	Os
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	POS
CO1	3	2	3	3	1	2	3	3	3	3	2	3	2	2
CO2	3	2	3	2	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	2	3	3	3	2	2	2	3	3	3	3
CO	3	2.6	3	2.6	2.6	2.8	3	2.8	2.8	2.8	2.8	3	2.8	2.8
Corre	lation Le	evel	ļ	1:Slight	(Low)		2	·Modera	te (Med	ium)	ļ	3.Subst	tantial (H	ioh)
conte	Introl L			1.511511	(LOW)		-			iuiii)		5.5405	untiur (11	.1511)
UN	IT-I	INT	RODU	CTION	TO DI	SASTEI	RS						9 He	mrs
Definitio								r Prena	redness	- Classifi	ication o	f Disaste		
Disasters Sphere P	roject				-					Health, et	с Туре	es of Vul		
	IT-II					STER F				1	1	0	9 He	
Phases o										on, and p	preparedr	ness - Co	mmunity	-basec
Disaster	RISK Red	uction -	Structu	rai and I	Non-stru	ictural m	inigation	1 measur	res					
UNI	T-III	INT	ER-RE	LATIO	NSHIP	BETW	EEN DI	SASTE	RS AN	D DEVE	LOPME	NT	9 He	ours
Linkage Change Local Re	Adaptatic													
UNI	T-IV	DIS	ASTER	RISK	MANA	GEMEN	T IN I	NDIA					9 He	ours
Hazards-		oility Pr	ofile of	India -	Compo	nents of	Disaste	er Relie	f: Water	, Sanitati	on, Foo	l, Shelter		
National Disaster	Policy an	nd Disa	ster Ma	nagemer	nt - Insti	tutional	Framew							

UN	NIT-V	DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS	9 Hours
Applica	tion of Infor	mation Technology, Remote Sensing Technology, and Geographic Information Syste	m in Disaster Risk
Reducti	on - Case S	tudies on Landslide Hazard Zonation, Seismic Assessment of Buildings and Infras	structures, Drought
Assessn	nent, Coasta	l Flooding Assessment, Storm Surge Assessment, Fluvial and Pluvial Floods Assess	sment, Forest Fires
Assessn	nent		
		1	TOTAL: 45 Hours
TEXT	BOOKS:		
1.	Singhal J.	P. "Disaster Management", Laxmi Publications, 2010.	
2.	Tushar B	nattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt.	Ltd., 2012.
3.	Pardeep S	ahni and Madhavi Malalgoda Ariyabandu, "Disaster Risk Reduction in South Asia", I	PHI Learning
	Private Li	mited. Delhi- 110092, 2017	_
4.	Gupta An	il K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM	I, New Delhi,
	2011		
5.	Kapur An	u Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, Ne	ew Delhi, 2010.
REFER	RENCES:		
1.	Govt. of I	ndia: Disaster Management Act, Government of India, New Delhi, 2005	
2.	Governme	ent of India, National Disaster Management Policy,2009.	

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for B.E. / B.Tech. Semester VIII Regulations 2019 Branch: Civil Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours
		Practical					
1	U19CE801	Project Work	0	0	24	12	360
				То	tal Credits	12	

Approved By

Chairperson, Civil Engineering BoS	Member Secretary, Academic Council	Chairperson, Academic Council & Principal
Dr.R.Malathy	Dr.R.Shivakumar	Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Civil Engineering, Eighth Semester BE Civil Students and Staff, COE